tinygrad/test/test_jit.py

399 lines
13 KiB
Python

#!/usr/bin/env python
import unittest, functools
import numpy as np
from test.helpers import assert_jit_cache_len
from tinygrad.tensor import Tensor
from tinygrad.engine.jit import TinyJit
from tinygrad.device import Device
from tinygrad.helpers import CI
def _simple_test(add, extract=lambda x: x, N=10):
for _ in range(5):
a = Tensor.randn(N, N)
b = Tensor.randn(N, N)
c = add(a, b)
np.testing.assert_allclose(extract(c).numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add, 1)
class TestJit(unittest.TestCase):
def test_simple_jit(self):
@TinyJit
def add(a, b): return (a+b).realize()
_simple_test(add)
def test_simple_jit_reset(self):
@TinyJit
def add(a, b): return (a+b).realize()
_simple_test(add)
add.reset()
_simple_test(add, N=20)
def test_simple_jit_norealize(self):
@TinyJit
def add(a, b): return (a+b)
_simple_test(add)
def test_simple_jit_norealize_list(self):
@TinyJit
def add(a, b): return [a+b]
_simple_test(add, extract=lambda x: x[0])
def test_simple_jit_norealize_dict(self):
@TinyJit
def add(a, b): return {"billy": a+b}
_simple_test(add, extract=lambda x: x["billy"])
def test_jit_multiple_outputs(self):
@TinyJit
def f(a, b): return (a+b).realize(), (a-b).realize(), (a*b).realize()
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c, d, e = f(a, b)
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(d.numpy(), a.numpy()-b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(e.numpy(), a.numpy()*b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(f, 3)
def test_nothing_jitted(self):
@TinyJit
def add(a, b): return None
with self.assertRaises(AssertionError):
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
add(a, b)
def test_jit_shape_mismatch(self):
@TinyJit
def add(a, b): return (a+b).realize()
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
add(a, b)
bad = Tensor.randn(20, 20)
with self.assertRaises(AssertionError):
add(a, bad)
def test_jit_shape_views_mismatch(self):
@TinyJit
def add(a): return (a+1).realize()
with self.assertRaises(AssertionError):
for i in range(1,5):
# a has an offset that the kernel doesn't know about
a = Tensor.randn(10, 10).realize()[:, i:i+2]
add(a)
def test_jit_duplicate_fail(self):
# the jit doesn't support duplicate arguments
@TinyJit
def add(a, b): return (a+b).realize()
a = Tensor.randn(10, 10)
with self.assertRaises(AssertionError):
add(a, a)
def test_kwargs_jit(self):
@TinyJit
def add_kwargs(first, second): return (first+second).realize()
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c = add_kwargs(first=a, second=b)
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add_kwargs, 1)
def test_reorder_kwargs_jit(self):
@TinyJit
def add_kwargs(first, second): return (first/second).realize()
for _ in range(2):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c = add_kwargs(second=b, first=a)
np.testing.assert_allclose(c.numpy(), a.numpy()/b.numpy(), atol=1e-4, rtol=1e-5)
for _ in range(2):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c = add_kwargs(first=a, second=b)
np.testing.assert_allclose(c.numpy(), a.numpy()/b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add_kwargs, 1)
def test_array_jit(self):
@TinyJit
def add_array(a, arr): return (a+arr[0]).realize()
for i in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
a.realize(), b.realize()
c = add_array(a, [b])
if i >= 2:
# should fail once jitted since jit can't handle arrays
np.testing.assert_allclose(np.any(np.not_equal(c.numpy(),a.numpy()+b.numpy())), True, atol=1e-4, rtol=1e-5)
else:
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add_array, 1)
def test_jit_copyin(self):
@TinyJit
def f(a):
return a + Tensor([1,2,3])
for _ in range(5):
b = Tensor.randn(3)
c = f(b)
np.testing.assert_allclose(c.numpy(), b.numpy()+[1,2,3], atol=1e-4, rtol=1e-5)
def test_method_jit(self):
class Fun:
def __init__(self):
self.a = Tensor.randn(10, 10)
@TinyJit
def __call__(self, b:Tensor) -> Tensor:
return (self.a+b).realize()
fun = Fun()
for _ in range(5):
b = Tensor.randn(10, 10)
c = fun(b)
np.testing.assert_allclose(c.numpy(), fun.a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(fun.__call__.func.__self__, 1)
def test_jit_size1_input(self):
@TinyJit
def f(a, b): return (a+b).realize()
a = Tensor([1, 2, 3])
for i in range(5):
np.testing.assert_allclose(f(a, Tensor([i])).numpy(), (a+i).numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(f, 1)
def test_jit_output_non_tensor_fail(self):
@TinyJit
def f(a, b, i): return (a+b).realize(), i
output1, output2 = [], []
expect1, expect2 = [], []
for i in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
o1, o2 = f(a, b, i)
output1.append(o1.numpy().copy())
output2.append(o2)
expect1.append(a.numpy().copy()+b.numpy().copy())
expect2.append(i)
np.testing.assert_allclose(output1, expect1, atol=1e-4, rtol=1e-5)
# the jit only works with Tensor outputs
assert output2 != expect2
assert_jit_cache_len(f, 1)
def test_jit_random_regen(self):
def f(a, b):
rn = Tensor.randn(*a.shape)
return ((a+b)*rn).realize()
a = Tensor.randn(10, 10).realize() # realize these before resetting the random seed
b = Tensor.randn(10, 10).realize()
Tensor.manual_seed(1234)
jf = TinyJit(f)
res = set()
for _ in range(5):
o1 = jf(a, b)
res.add(o1.numpy()[0][0])
assert len(res) == 5, "All values should be different, rand works in jit."
Tensor.manual_seed(1234)
jf2 = TinyJit(f)
res2 = set()
for _ in range(5):
o1 = jf2(a, b)
res2.add(o1.numpy()[0][0])
assert len(res2) == 5, "All values should be different, rand works in jit."
assert res == res2, "Jit rand is not reproducible with the same seed"
Tensor.manual_seed(3421)
jf3 = TinyJit(f)
res3 = set()
for _ in range(5):
o1 = jf3(a, b)
res3.add(o1.numpy()[0][0])
assert len(res3) == 5, "All values should be different, rand works in jit."
assert res3 != res2, "Jit rand is diff with diff seeds"
def test_jit_realization_and_sampling(self):
w = Tensor.eye(5)
@TinyJit
def foo (x): return w.dot(x).realize()
arg = [
Tensor([1,2,3,4,5]),
Tensor([1,3,3,4,6]),
Tensor([1,2,5,4,7]),
Tensor([0,2,3,1,0]),
]
Y = [foo(e).numpy() for e in arg]
foo(Tensor([7,7,7,7,7]))
want = [[1., 2., 3., 4., 5.],
[1., 3., 3., 4., 6.],
[1., 2., 5., 4., 7.],
[0., 2., 3., 1., 0.]]
np.testing.assert_allclose(want, Y)
@unittest.skip("was this supposed to work?")
def test_jitted_read_assign(self):
class Cache:
def __init__(self):
self.good_cache = Tensor.zeros(1)
self.bad_cache = Tensor.zeros(1)
self.good_jitted = TinyJit(self.good)
self.bad_jitted = TinyJit(self.bad)
def good(self, y, cache_v=None):
if cache_v is not None:
self.good_cache.assign(cache_v+1-1).realize()
return (self.good_cache + y).realize() # need + y to provide inputs to JIT
def bad(self, y, cache_v=None):
if cache_v is not None:
self.bad_cache.assign(cache_v).realize()
return (self.bad_cache + y).realize()
cache = Cache()
np.testing.assert_equal([0], cache.good_cache.numpy())
np.testing.assert_equal([0], cache.bad_cache.numpy())
zero = Tensor([0.])
one = Tensor([1.])
two = Tensor([2.])
# save [1] in the caches
cache.good(zero, one)
cache.bad(zero, one)
np.testing.assert_equal([1], cache.good_cache.numpy())
np.testing.assert_equal([1], cache.bad_cache.numpy())
for i in range(5):
x = Tensor([i*1.]) # NOTE: if this doesn't change, it just hits the lazybuffer cache
cache.good_jitted(x)
cache.bad_jitted(x)
# verify the jitted calls read 1 from the cache
np.testing.assert_equal([1], cache.good_jitted(zero).numpy())
np.testing.assert_equal([1], cache.bad_jitted(zero).numpy())
# save [2] in the caches
cache.good(zero, two)
cache.bad(zero, two)
np.testing.assert_equal([2], cache.good_cache.numpy())
np.testing.assert_equal([2], cache.bad_cache.numpy())
# verify the jitted calls read 2 from the cache
np.testing.assert_equal([2], cache.good_jitted(zero).numpy())
# but the bad_jitted doesn't!
np.testing.assert_equal([1], cache.bad_jitted(zero).numpy())
assert_jit_cache_len(cache.good_jitted, 1)
assert_jit_cache_len(cache.bad_jitted, 1)
def test_jit_buffer_behavior(self):
@TinyJit
def foo(x) -> Tensor: return x.sum().realize()
result_1 = foo(Tensor([1] * 2))
result_2 = foo(Tensor([2] * 2))
result_3 = foo(Tensor([3] * 2))
# expect the buffer to share underlying buffer
np.testing.assert_allclose(result_1.numpy(), [2], atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(result_2.numpy(), [6], atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(result_3.numpy(), [6], atol=1e-4, rtol=1e-5)
@unittest.skipIf(CI and Device.DEFAULT=="METAL", "no ICB in CI, creation of graph fails")
def test_jit_batch_split(self):
if Device[Device.DEFAULT].graph is None: raise unittest.SkipTest("only test graphs")
# Create long jit with 83 kernels.
def f(a, b, c, d, e):
for _ in range(80):
a = (a+b).realize()
y = (a*c).realize()
z = (y*d).realize()
w = (z*e)
return w.realize()
a = Tensor.randn(10, 10).realize()
b = Tensor.randn(10, 10).realize()
c = Tensor.randn(10, 10).realize()
d = Tensor.randn(10, 10).realize()
e = Tensor.randn(10, 10).realize()
jf = TinyJit(f)
prev = None
for _ in range(5):
o = jf(a, b, c, d, e).numpy()
if prev is not None: np.testing.assert_allclose(o, prev, atol=1e-4, rtol=1e-5)
prev = o
graph_t = Device[Device.DEFAULT].graph.func if isinstance(Device[Device.DEFAULT].graph, functools.partial) else Device[Device.DEFAULT].graph
# Checking that 2 graphs are inited.
assert isinstance(jf.jit_cache[0].prg, graph_t)
assert isinstance(jf.jit_cache[1].prg, graph_t)
def test_jit_const_inputs(self):
@TinyJit
def f(x,y): return (x+y).realize()
for _ in range(5):
np.testing.assert_equal(f(Tensor.ones(3), Tensor.zeros(3)).numpy(), np.ones(3))
@TinyJit
def g(x,y,z): return (x+y+z).realize()
for i in range(5):
np.testing.assert_equal(g(Tensor([i]*3), Tensor.ones(3), Tensor.zeros(3)).numpy(), np.array([i+1]*3))
@unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL", "HSA"}, "no GPU CI")
def test_jitted_transfers(self):
d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"
def f(a, b):
x = a.to(d1)
y = b.to(d1)
return x.realize(), y.realize()
jf = TinyJit(f)
for _ in range(5):
a = Tensor.randn(10, 10, device=d0).realize()
b = Tensor.randn(10, 10, device=d0).realize()
xc, yc = jf(a, b)
np.testing.assert_allclose(a.numpy(), xc.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(b.numpy(), yc.numpy(), atol=1e-4, rtol=1e-5)
@unittest.skip("Pending multioutput implementation #3607")
class TestMultioutputJit(unittest.TestCase):
def _test(self, f):
for _ in range(5):
a, b = Tensor.randn(10, 10), Tensor.randn(10, 10)
out0, out1, out2 = f(a, b)
np.testing.assert_allclose(out0.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(out1.numpy(), a.numpy()-b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(out2.numpy(), a.numpy()*b.numpy(), atol=1e-4, rtol=1e-5)
def test_jit_multioutput_realize(self):
@TinyJit
def fxn(a, b): return (a+b).realize(), (a-b).realize(), (a*b).realize()
self._test(fxn)
assert_jit_cache_len(fxn, 3)
def test_jit_multioutput_norealize(self):
@TinyJit
def fxn(a, b): return a+b, a-b, a*b
self._test(fxn)
assert_jit_cache_len(fxn, 1)
def test_jit_multioutput_mix(self):
@TinyJit
def fxn(a, b): return a+b, a-b, (a*b).realize()
self._test(fxn)
assert_jit_cache_len(fxn, 2)
if __name__ == '__main__':
unittest.main()