tinygrad/test/mnist.py

73 lines
1.7 KiB
Python

#!/usr/bin/env python
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.utils import fetch_mnist
import tinygrad.optim as optim
from tqdm import trange
# load the mnist dataset
X_train, Y_train, X_test, Y_test = fetch_mnist()
# train a model
np.random.seed(1337)
def layer_init(m, h):
ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h)
return ret.astype(np.float32)
class TinyBobNet:
def __init__(self):
self.l1 = Tensor(layer_init(784, 128))
self.l2 = Tensor(layer_init(128, 10))
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
# optimizer
model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)
#optim = optim.Adam([model.l1, model.l2], lr=0.001)
BS = 128
losses, accuracies = [], []
for i in (t := trange(1000)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -10.0
y = Tensor(y)
# network
outs = model.forward(x)
# NLL loss function
loss = outs.mul(y).mean()
loss.backward()
optim.step()
cat = np.argmax(outs.data, axis=1)
accuracy = (cat == Y).mean()
# printing
loss = loss.data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
# evaluate
def numpy_eval():
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28))))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95