tinygrad/test/test_tensor.py

765 lines
29 KiB
Python

import subprocess
import numpy as np
import torch
import unittest, copy, mmap, random, math, array
from tinygrad import Tensor, Device, dtypes
from tinygrad.engine.schedule import create_schedule
from tinygrad.helpers import getenv, temp, CI, _METADATA, mv_address
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
from hypothesis import given, settings, strategies as strat
from test.helpers import is_dtype_supported
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
settings.load_profile("my_profile")
x_init = np.random.randn(1,3).astype(np.float32)
U_init = np.random.randn(3,3).astype(np.float32)
V_init = np.random.randn(3,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
gradient = np.random.randn(1,3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
def test_zerodim_initialization(self):
self.assertEqual(Tensor(55).shape, ())
self.assertEqual(Tensor(3.14).shape, ())
def test_plus_equals(self):
a = Tensor.randn(10,10)
b = Tensor.randn(10,10)
c = a + b
val1 = c.numpy()
a += b
val2 = a.numpy()
np.testing.assert_allclose(val1, val2)
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.numpy(), x.grad.numpy(), W.grad.numpy()
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
# A simple test is to check that we can accumulate gradients (run backward twice or more times)
# This will only work if retain_graph works.
def test_retain_graph(self):
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m).sum()
out.backward(retain_graph=True)
xgrad,wgrad = x.grad.numpy(), W.grad.numpy()
out.backward(retain_graph=True)
xgrad2,wgrad2 = x.grad.numpy(), W.grad.numpy()
out.backward() # no need to retain again since we will not re-run backward
xgrad3,wgrad3 = x.grad.numpy(), W.grad.numpy()
np.testing.assert_allclose(xgrad3, xgrad * 3., atol=1e-6)
np.testing.assert_allclose(wgrad3, wgrad * 3., atol=1e-6)
np.testing.assert_allclose(xgrad2, xgrad * 2., atol=1e-6)
np.testing.assert_allclose(wgrad2, wgrad * 2., atol=1e-6)
@unittest.expectedFailure
def test_second_order_backward_pass(self):
def test_pytorch():
x = torch.tensor(x_init)
m = torch.tensor(m_init, requires_grad=True)
out = x.mul(m).sum()
# use retain graph so we can compute second order derivatives later
out.backward(retain_graph=True)
# save first-order gradient (dO/dm). they still contain graph information on how they were constructed wrt x and W
grad_m = m.grad
# zero gradients so second-order gradients are correct
m.grad = None
# compute second-order gradients
grad_m.sum().backward(retain_graph=True)
# d2O/dm2
second_grad_m = m.grad
return second_grad_m.numpy()
def test_tinygrad():
x = Tensor(x_init)
m = Tensor(m_init, requires_grad=True)
out = x.mul(m).sum()
out.backward()
grad_m = m.grad
m.grad = None
grad_m.sum().backward()
second_grad_m = m.grad # currently, this will be None (incorrect)
return second_grad_m.numpy()
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
# passing `gradient` to backward
def test_backward_pass_vjp(self):
def test_tinygrad():
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m)
out.backward(Tensor(gradient))
return out.numpy(), x.grad.numpy(), W.grad.numpy()
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m)
out.backward(torch.tensor(gradient))
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "this test uses more than 8 bufs which breaks webgpu") #TODO: remove after #1461
def test_backward_pass_diamond_model(self):
def test_tinygrad():
u = Tensor(U_init, requires_grad=True)
v = Tensor(V_init, requires_grad=True)
w = Tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = out.log_softmax()
out = out.sum()
out.backward()
return out.numpy(), u.grad.numpy(), v.grad.numpy(), w.grad.numpy()
def test_pytorch():
u = torch.tensor(U_init, requires_grad=True)
v = torch.tensor(V_init, requires_grad=True)
w = torch.tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.sum()
out.backward()
return out.detach().numpy(), u.grad, v.grad, w.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5, rtol=1e-6)
def test_nograd(self):
x = Tensor(x_init, requires_grad=False)
m = Tensor(m_init, requires_grad=False)
W = Tensor(W_init, requires_grad=True)
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is not None
assert W.grad is not None
def test_dropout(self):
with Tensor.train():
n, rate = 1_000_000, 0.1
w = Tensor.ones(n).dropout(rate)
non_zeros = np.count_nonzero(w.numpy())
expected = n * (1 - rate)
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
def test_jacobian(self):
W = np.random.RandomState(42069).random((10, 5)).astype(np.float32)
x = np.random.RandomState(69420).random((1, 10)).astype(np.float32)
torch_x = torch.tensor(x, requires_grad=True)
torch_W = torch.tensor(W, requires_grad=True)
def torch_func(x): return torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
tiny_x = Tensor(x, requires_grad=True)
tiny_W = Tensor(W, requires_grad=True)
def tiny_func(x): return x.dot(tiny_W).relu().log_softmax()
J = jacobian(tiny_func, tiny_x)
NJ = numerical_jacobian(tiny_func, tiny_x)
np.testing.assert_allclose(PJ, J, atol = 1e-5)
np.testing.assert_allclose(PJ, NJ, atol = 1e-3)
def test_gradcheck(self):
W = np.random.RandomState(1337).random((10, 5)).astype(np.float32)
x = np.random.RandomState(7331).random((1, 10)).astype(np.float32)
tiny_x = Tensor(x, requires_grad=True)
tiny_W = Tensor(W, requires_grad=True)
def tiny_func(x): return x.dot(tiny_W).relu().log_softmax()
self.assertTrue(gradcheck(tiny_func, tiny_x, eps = 1e-3))
# coarse approx. since a "big" eps and the non-linearities of the model
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 1e-5))
def test_random_fns_are_deterministic_with_seed(self):
for random_fn in [Tensor.randn, Tensor.normal, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform, Tensor.kaiming_normal]:
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
Tensor.manual_seed(1337)
a = random_fn(10,10).realize()
Tensor.manual_seed(1337)
b = random_fn(10,10).realize()
np.testing.assert_allclose(a.numpy(), b.numpy())
def test_randn_isnt_inf_on_zero(self):
# simulate failure case of rand handing a zero to randn
original_rand, Tensor.rand = Tensor.rand, Tensor.zeros
try: self.assertNotIn(np.inf, Tensor.randn(16).numpy())
except: raise
finally: Tensor.rand = original_rand
def test_zeros_like_has_same_dtype_and_shape(self):
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
a = Tensor([1, 2, 3], dtype=datatype)
b = Tensor.zeros_like(a)
assert a.dtype == b.dtype, f"dtype mismatch {a.dtype=} != {b.dtype}"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
a = Tensor([1, 2, 3])
b = Tensor.zeros_like(a, dtype=dtypes.int8)
assert a.dtype == dtypes.default_int and b.dtype == dtypes.int8, "a.dtype should be int and b.dtype should be char"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
def test_ones_like_has_same_dtype_and_shape(self):
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
a = Tensor([1, 2, 3], dtype=datatype)
b = Tensor.ones_like(a)
assert a.dtype == b.dtype, f"dtype mismatch {a.dtype=} != {b.dtype}"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
a = Tensor([1, 2, 3])
b = Tensor.ones_like(a, dtype=dtypes.int8)
assert a.dtype == dtypes.default_int and b.dtype == dtypes.int8, "a.dtype should be int and b.dtype should be char"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
def test_ndim(self):
assert Tensor(1).ndim == 0
assert Tensor.randn(1).ndim == 1
assert Tensor.randn(2,2,2).ndim == 3
assert Tensor.randn(1,1,1,1,1,1).ndim == 6
def test_argfix(self):
for f in [Tensor.zeros, Tensor.ones, Tensor.rand, Tensor.randn, Tensor.empty]:
self.assertEqual(f().shape, ())
self.assertEqual(f(1).shape, (1,))
self.assertEqual(f(10,20,40).shape, (10,20,40))
self.assertEqual(f([]).shape, ())
self.assertEqual(f([1]).shape, (1,))
self.assertEqual(f([10,20,40]).shape, (10,20,40))
self.assertEqual(f(()).shape, ())
self.assertEqual(f((1,)).shape, (1,))
self.assertEqual(f((10,20,40)).shape, (10,20,40))
with self.assertRaises(ValueError): f((2, 2), 2, 2)
with self.assertRaises(ValueError): f((2, 2), (2, 2))
with self.assertRaises(ValueError): f((128, 128), 0.0, 0.01)
def test_numel(self):
assert Tensor.randn(10, 10).numel() == 100
assert Tensor.randn(1,2,5).numel() == 10
assert Tensor.randn(1,1,1,1,1,1).numel() == 1
assert Tensor([]).numel() == 0
assert Tensor.randn(1,0,2,5).numel() == 0
assert Tensor(3).numel() == 1
def test_len(self):
assert len(torch.zeros(7)) == len(Tensor.zeros(7))
assert len(torch.zeros(10,20)) == len(Tensor.zeros(10,20))
assert len(torch.zeros(10,20)) == len(Tensor.zeros(10,20,30))
assert len(torch.zeros(1).flatten()) == len(Tensor.zeros(1).flatten())
with self.assertRaises(TypeError): len(Tensor(3))
def test_size(self):
t1, t2 = torch.zeros(10,20), Tensor.zeros(10,20)
assert t1.size() == t2.size()
assert t1.size(0) == t2.size(0)
assert t1.size(1) == t2.size(1)
assert t1.size(-1) == t2.size(-1)
assert t1.size(-2) == t2.size(-2)
with self.assertRaises(IndexError): t2.size(2)
def test_tolist(self):
# NOTE: float16 Tensor.tolist() requires python 3.12
for arr in [[1,2,3], [1.5,2,3], [[1,2,3], [4,5,6]], 3]:
assert Tensor(arr).tolist() == torch.tensor(arr).tolist() == arr
def test_element_size(self):
for _, dtype in dtypes.fields().items():
assert dtype.itemsize == Tensor.randn(3, dtype=dtype).element_size(), f"Tensor.element_size() not matching Tensor.dtype.itemsize for {dtype}"
def test_deepwalk_ctx_check(self):
layer = Tensor.uniform(1, 1, requires_grad=True)
x = Tensor.randn(1, 1, 1)
x.dot(layer).mean().backward()
x = Tensor.randn(1, 1, 1)
x.dot(layer).mean().backward()
def test_zerosized_tensors(self):
np.testing.assert_equal(Tensor([]).numpy(), np.array([]))
np.testing.assert_equal(Tensor(None).numpy(), np.array([]))
def test_tensor_ndarray_dtype(self):
arr = np.array([1]) # where dtype is implicitly int64
assert Tensor(arr).dtype == dtypes.int64
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32 # check if ndarray correctly casts to Tensor dtype
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64 # check that it works for something else
def test_tensor_from_blob(self):
x = memoryview(bytearray(16)).cast('I')
t = Tensor.from_blob(mv_address(x), (4,), dtype=dtypes.int, device="CLANG")
z = (t+1)
np.testing.assert_equal(z.numpy(), [1, 1, 1, 1])
x[:] = array.array('I', [0, 1, 2, 3])
z = (t+1)
np.testing.assert_equal(z.numpy(), [1, 2, 3, 4])
def test_tensor_list_dtype(self):
for arr in ([1], [[[1]]], [[1,1],[1,1]], [[[1,1],[1,1]],[[1,1],[1,1]]]):
assert Tensor(arr).dtype == dtypes.default_int
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
for arr in ([True], [[[False]]], [[True,False],[True,False]], [[[False,True],[False,False]],[[True,True],[False,True]]]):
assert Tensor(arr).dtype == dtypes.bool
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
# empty tensor defaults
for arr in ([], [[[]]], [[],[]]):
t = Tensor(arr)
assert t.dtype == dtypes.default_float
np.testing.assert_allclose(t.numpy(), np.array(arr))
# mixture of bool and int
for arr in ([True, 3], [[True],[3]], [[[True]], [[3]]], [[True, 3], [3, True]]):
t = Tensor(arr)
assert t.dtype == dtypes.default_int
np.testing.assert_allclose(t.numpy(), np.array(arr))
# mixture of bool, int and float
for arr in ([[True,True],[3.,True]], [[0,1],[3.,4]], [[[0],[1]],[[3.],[4]]], [[[True],[1]],[[3.],[4]]]):
t = Tensor(arr)
assert t.dtype == dtypes.default_float
np.testing.assert_allclose(t.numpy(), np.array(arr))
def test_tensor_list_shapes(self):
self.assertEqual(Tensor([[[]]]).shape, (1,1,0))
self.assertEqual(Tensor([[],[]]).shape, (2,0))
self.assertEqual(Tensor([[[[]],[[]]], [[[]],[[]]], [[[]],[[]]]]).shape, (3,2,1,0))
def test_tensor_list_errors(self):
# inhomogeneous shape
with self.assertRaises(ValueError): Tensor([[],[[]]])
with self.assertRaises(ValueError): Tensor([[1],[]])
with self.assertRaises(ValueError): Tensor([[1],[1],1])
with self.assertRaises(ValueError): Tensor([[[1,1,1],[1,1]]])
with self.assertRaises(ValueError): Tensor([[1,1,1],[[1,1,1]]])
def test_tensor_mixed_list_tuple(self):
def _list_or_tuple(): return list if random.random() < 0.5 else tuple
def _generate_data(depth):
if depth == 0: return _list_or_tuple()()
if depth == 1: return _list_or_tuple()([random.random(), random.random()])
return _list_or_tuple()([_generate_data(depth-1), _generate_data(depth-1)])
for depth in range(7):
for _ in range(20):
data = _generate_data(depth)
np.testing.assert_allclose(Tensor(data).numpy(), np.array(data))
def test_tensor_list_special_values(self):
if is_dtype_supported(dtypes.float16):
data = [math.nan, -math.inf, 65504, 65519, 65519.999, 65520, 65520.1]
data = data + [-x for x in data]
np.testing.assert_allclose(Tensor(data, dtype=dtypes.float16).numpy(), np.array(data).astype(np.float16))
# uint32
data = [1 << 33, 1 << 32, 1 << 32 - 1, 1]
data = data + [-x for x in data]
np.testing.assert_allclose(Tensor(data, dtype=dtypes.uint32).numpy(), np.array(data).astype(np.uint32))
# int32
data = [1 << 33, 1 << 32, 1 << 32 - 1, 1]
data = data + [-x for x in data]
np.testing.assert_allclose(Tensor(data, dtype=dtypes.int32).numpy(), np.array(data).astype(np.int32))
def test_tensor_list_ndarray(self):
data = [np.array([1, 2, 3]), np.array([1, 2, 3]), np.array([1, 2, 3])]
np.testing.assert_equal(Tensor(data).numpy(), np.array(data))
data = [np.array([1.0, 2.0, 3.0]), np.array([1, 2, 3]), np.array([1, 2, 3])]
np.testing.assert_equal(Tensor(data).numpy(), np.array(data))
data = [np.array(1.0), np.array(2.0), np.array(3.0)]
np.testing.assert_equal(Tensor(data).numpy(), np.array(data))
def test_tensor_bytes(self):
data = b"abc123"
t = Tensor(data)
assert t.dtype == dtypes.uint8
assert t.shape == (6,)
np.testing.assert_equal(t.numpy(), list(data))
def test_tensor_copy(self):
x = copy.deepcopy(Tensor.ones((3,3,3)))
np.testing.assert_allclose(x.numpy(), np.ones((3,3,3)))
def test_copy_from_disk(self):
t = Tensor.randn(30).to(f"disk:{temp('test_copy_from_disk')}")
a = t[10:20]
dev = a.to(Device.DEFAULT)
np.testing.assert_allclose(a.numpy(), dev.numpy())
# Regression test for https://github.com/tinygrad/tinygrad/issues/1751
def test_copy_from_numpy_unaligned(self):
# 2**15 is the minimum for repro
arr = np.random.randn(2**15).astype(np.float32)
fn = temp('test_copy_from_numpy_unaligned')
with open(fn, 'wb') as f: f.write(b't' + arr.tobytes())
with open(fn, "a+b") as f: memview = memoryview(mmap.mmap(f.fileno(), arr.nbytes + 1))
ua_arr = np.frombuffer(memview[1:], dtype=arr.dtype, count=arr.shape[0])
np.testing.assert_allclose(arr, ua_arr)
assert not ua_arr.flags.aligned
# force device copy - to() is opt'd away - Tensor(dev)/1 is ignored
np.testing.assert_allclose(ua_arr, (Tensor(ua_arr)/Tensor(1)).numpy())
def test_item_to_tensor_to_item(self):
for a in [0, 1, 2, 3, -1, -100, 100, -101.1, 2.345, 100.1, True, False]:
item = Tensor(a).item()
assert type(item) is type(a), a
np.testing.assert_allclose(item, a), a
buffered_item = Tensor([a]).item()
assert type(buffered_item) is type(a), a
np.testing.assert_allclose(buffered_item, a), a
reshaped_item = Tensor([a]).reshape((1, 1, 1, 1, 1)).item()
assert type(reshaped_item) is type(a), a
np.testing.assert_allclose(reshaped_item, a), a
def test_no_bool(self):
with self.assertRaises(TypeError):
if Tensor(3):
print("hi")
with self.assertRaises(TypeError):
_a = Tensor([3]) in [Tensor([3]), Tensor([4]), Tensor([5])]
def test_repr_with_grad(self):
a = Tensor([1], requires_grad=True)
b = Tensor([1])
c = (a + b).mean().backward()
print(a)
print(c)
def test_env_overwrite_default_device(self):
subprocess.run(['DISK=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT != \\"DISK\\""'],
shell=True, check=True)
subprocess.run(['NPY=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT != \\"NPY\\""'],
shell=True, check=True)
subprocess.run([f'{Device.DEFAULT}=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT == \\"{Device.DEFAULT}\\""'],
shell=True, check=True)
subprocess.run([f'DISK=1 {Device.DEFAULT}=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT == \\"{Device.DEFAULT}\\""'],
shell=True, check=True)
subprocess.run([f'NPY=1 {Device.DEFAULT}=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT == \\"{Device.DEFAULT}\\""'],
shell=True, check=True)
@unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL", "NV", "AMD"}, "no GPU CI")
class TestMoveTensor(unittest.TestCase):
d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"
@given(strat.sampled_from([d0, d1]), strat.sampled_from([d0, d1]),
strat.sampled_from([dtypes.float16, dtypes.float32]), strat.sampled_from([True, False, None]))
def test_to_preserves(self, src, dest, dtype, requires_grad):
s = Tensor([1, 2, 3], device=src, dtype=dtype, requires_grad=requires_grad)
if requires_grad: s.sum().backward()
t = s.to(dest)
np.testing.assert_equal(s.numpy(), t.numpy())
assert s.dtype == t.dtype
assert s.requires_grad == t.requires_grad
if requires_grad:
np.testing.assert_equal(s.grad.numpy(), t.grad.numpy())
@given(strat.sampled_from([dtypes.float16, dtypes.float32]), strat.sampled_from([True, False, None]))
def test_shard_preserves(self, dtype, requires_grad):
s = Tensor([1, 2, 3], dtype=dtype, requires_grad=requires_grad)
t = s.shard((f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"))
np.testing.assert_equal(s.numpy(), t.numpy())
assert s.dtype == t.dtype
assert s.requires_grad == t.requires_grad
@given(strat.sampled_from([d0, d1]))
def test_same_dev(self, dev):
x = Tensor([1,2,3], device=dev)
y = x.to(dev)
assert x is y
def test_to_grad(self):
x = Tensor.eye(3, requires_grad=True, device=self.d0)
y = Tensor([[2.0,0,-2.0]], requires_grad=True, device=self.d0)
z = y.matmul(x).to(self.d1).sum()
z.backward()
np.testing.assert_equal(x.grad.numpy(), [[2,2,2],[0,0,0],[-2,-2,-2]])
class TestZeroShapeTensor(unittest.TestCase):
def test_shape_stride(self):
t = Tensor.empty(3, 2, 0)
assert t.shape == (3, 2, 0)
# numpy has stride 0, 0, 0; torch has stride 2, 1, 1
assert t.lazydata.st.real_strides() == (0, 0, 0)
t = Tensor.empty(3, 0, 2)
assert t.shape == (3, 0, 2)
# numpy has stride 0, 0, 0; torch has stride 2, 2, 1
assert t.lazydata.st.real_strides() == (0, 0, 0)
t = Tensor.empty(0, 0, 0)
assert t.shape == (0, 0, 0)
# numpy has stride 0, 0, 0; torch has stride 1, 1, 1
assert t.lazydata.st.real_strides() == (0, 0, 0)
def test_rand(self):
t = Tensor.rand(3, 2, 0)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
t = Tensor.rand(0)
assert t.shape == (0,)
np.testing.assert_equal(t.numpy(), np.zeros((0,)))
t = Tensor.rand(0, 0, 0)
assert t.shape == (0, 0, 0)
np.testing.assert_equal(t.numpy(), np.zeros((0, 0, 0)))
def test_full(self):
t = Tensor.zeros(3, 2, 0)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
t = Tensor.full((3, 2, 0), 12)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.full((3, 2, 0), 12))
def test_reshape(self):
t = Tensor.zeros(3, 2, 0)
a = t.reshape(7, 0)
assert a.shape == (7, 0)
np.testing.assert_equal(a.numpy(), np.zeros((7, 0)))
a = t.reshape(0)
assert a.shape == (0,)
np.testing.assert_equal(a.numpy(), np.zeros((0,)))
with self.assertRaises(AssertionError):
# cannot reshape from size 0 to size 1
a = t.reshape(())
def test_expand(self):
t = Tensor.full((1, 2, 0), 12).expand((6, 2, 0))
assert t.shape == (6, 2, 0)
np.testing.assert_equal(t.numpy(), np.full((6, 2, 0), 12))
def test_pad(self):
t = Tensor.rand(3, 2, 0).pad((None, None, (1, 1)), value=1)
assert t.shape == (3, 2, 2)
np.testing.assert_equal(t.numpy(), np.ones((3, 2, 2)))
t = Tensor.rand(3, 2, 0).pad((None, (1, 1), None), value=1)
assert t.shape == (3, 4, 0)
np.testing.assert_equal(t.numpy(), np.ones((3, 4, 0)))
t = Tensor.rand(3, 2, 0).pad(((1, 1), None, None), value=1)
assert t.shape == (5, 2, 0)
np.testing.assert_equal(t.numpy(), np.ones((5, 2, 0)))
def test_shrink_into_zero(self):
t = Tensor.rand(3, 4).realize()
assert t.shrink((None, (2, 2))).realize().shape == (3, 0)
assert t.shrink(((2, 2), None)).realize().shape == (0, 4)
assert t.shrink(((2, 2), (2, 2))).realize().shape == (0, 0)
def test_cat(self):
a = Tensor.rand(3, 2, 2)
b = Tensor.rand(3, 2, 0)
t = a.cat(b, dim=2)
assert t.shape == (3, 2, 2)
np.testing.assert_equal(t.numpy(), a.numpy())
t = b.cat(a, dim=2)
assert t.shape == (3, 2, 2)
np.testing.assert_equal(t.numpy(), a.numpy())
t = b.cat(b, dim=0)
assert t.shape == (6, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((6, 2, 0)))
t = b.cat(b, dim=1)
assert t.shape == (3, 4, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 4, 0)))
t = b.cat(b, dim=2)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
def test_elementwise(self):
a = Tensor.rand(3, 2, 0)
a_exp = a.exp()
assert a_exp.shape == (3, 2, 0)
np.testing.assert_equal(a_exp.numpy(), np.exp(a.numpy()))
b = Tensor.rand(3, 2, 0)
assert b.shape == (3, 2, 0)
ab = a * b
assert ab.shape == (3, 2, 0)
np.testing.assert_equal(ab.numpy(), a.numpy() * b.numpy())
mask = (Tensor.rand(3, 2, 0) > 0.5)
assert mask.shape == (3, 2, 0)
c = mask.where(a, b)
assert c.shape == (3, 2, 0)
np.testing.assert_equal(c.numpy(), np.where(mask.numpy(), a.numpy(), b.numpy()))
def test_reduce_over_non_zero(self):
a = Tensor.ones(3, 2, 0).sum(axis=1)
assert a.shape == (3, 0)
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=1))
def test_reduce_over_zero(self):
a = Tensor.ones(3, 2, 0).sum(axis=2)
assert a.shape == (3, 2)
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2))
a = Tensor.ones(3, 2, 0).sum(axis=2, keepdim=True)
assert a.shape == (3, 2, 1)
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2, keepdims=True))
def test_reduce_default(self):
np.testing.assert_equal(Tensor([]).max().numpy(), -float("inf"))
np.testing.assert_equal(Tensor([]).min().numpy(), float("inf"))
np.testing.assert_equal(Tensor([]).sum().numpy(), 0)
np.testing.assert_equal(Tensor([]).mean().numpy(), float("nan"))
class TestTensorCreationDevice(unittest.TestCase):
# test auxiliary tensors are created on the same device
def test_one_hot(self):
y = Tensor([1, 2, 3]).to("CLANG")
x = y.one_hot(10)
x.realize()
class TestTrainMode(unittest.TestCase):
def test_train_mode(self):
assert not Tensor.training
@Tensor.train()
def f():
assert Tensor.training
f()
assert not Tensor.training
class TestInferenceMode(unittest.TestCase):
def test_inference(self):
x = Tensor(x_init, requires_grad=True)
m = Tensor(m_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
with Tensor.test():
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is None
assert W.grad is None
assert W.requires_grad
def test_no_grad_mode_context_manager(self):
x = Tensor(x_init, requires_grad=True)
m = Tensor(m_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
@Tensor.test()
def f(x, m, W):
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is None
assert W.grad is None
f(x, m, W)
class TestTensorMetadata(unittest.TestCase):
def test_matmul(self):
_METADATA.set(None)
x = Tensor.rand(3, requires_grad=True)
W = Tensor.rand(3, 3, requires_grad=True)
out = x.matmul(W)
assert out.lazydata.metadata.name == "matmul"
s = create_schedule([out.lazydata])
assert len(s[-1].metadata) == 1
assert s[-1].metadata[0].name == "matmul"
def test_relu(self):
_METADATA.set(None)
x = Tensor.rand(3, requires_grad=True)
out = x.relu()
assert out.lazydata.metadata.name == "relu"
s = create_schedule([out.lazydata])
assert len(s[-1].metadata) == 1
assert s[-1].metadata[0].name == "relu"
def test_complex(self):
_METADATA.set(None)
x = Tensor.rand(3, requires_grad=True)
y = Tensor.rand(3, requires_grad=True)
out = x.relu() * y.sigmoid()
assert out.lazydata.metadata.name == "__mul__"
assert out.lazydata.srcs[0].metadata.name == "relu"
assert out.lazydata.srcs[1].metadata.name == "sigmoid"
s = create_schedule([out.lazydata])
assert len(s[-1].metadata) == 3
assert s[-1].metadata[0].name == "relu"
assert s[-1].metadata[1].name == "sigmoid"
assert s[-1].metadata[2].name == "__mul__"
def test_complex_backward(self):
_METADATA.set(None)
x = Tensor.rand(3, requires_grad=True)
y = Tensor.rand(3, requires_grad=True)
out = (x.relu() * y.sigmoid()).sum()
assert out.lazydata.metadata.name == "sum"
out.backward()
assert x.grad.lazydata.metadata.name == "relu"
assert x.grad.lazydata.metadata.backward
assert y.grad.lazydata.metadata.name == "sigmoid"
assert y.grad.lazydata.metadata.backward
s = create_schedule([out.lazydata, x.grad.lazydata, y.grad.lazydata])
assert len(s[-1].metadata) == 3
assert s[-1].metadata[0].name == "sigmoid"
assert s[-1].metadata[1].name == "sigmoid"
assert s[-1].metadata[1].backward
assert s[-1].metadata[2].name == "relu"
if __name__ == '__main__':
unittest.main()