tinygrad/test/test_search.py

159 lines
9.3 KiB
Python

import unittest
from test.helpers import ast_const
from tinygrad.codegen.kernel import Opt, OptOps
from tinygrad.codegen.kernel import Kernel
from tinygrad.ops import UOp, UOps, BinaryOps
from tinygrad.engine.schedule import create_schedule
from tinygrad.engine.search import time_linearizer, bufs_from_lin, actions, beam_search
from tinygrad.device import Device, Buffer
from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes
from tinygrad.helpers import Context, GlobalCounters
from tinygrad.engine.realize import capturing
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View
class TestTimeLinearizer(unittest.TestCase):
def test_reasonable_time(self):
si = [i for i in create_schedule([Tensor([1,2,3,4]).add(1).lazydata]) if i.ast.op is UOps.SINK][0]
out = Buffer(Device.DEFAULT, si.outputs[0].size, si.outputs[0].dtype).allocate()
memops = {x.src[0].arg:x.src[-1].arg.real_size() for x in si.ast.parents if x.op is UOps.LOAD}
rawbufs = [out] + [Buffer(Device.DEFAULT, memops[i], x.dtype).allocate() for i,x in enumerate(si.inputs, start=len(si.outputs))]
tm = time_linearizer(Kernel(si.ast), rawbufs, allow_test_size=False, cnt=10, disable_cache=True)
assert tm > 0 and tm != float('inf')
def test_bufs_from_lin(self):
si = [i for i in create_schedule([Tensor([1,2,3,4]).add(1).lazydata]) if i.ast.op is UOps.SINK][0]
rawbufs = bufs_from_lin(lin:=Kernel(si.ast))
assert len(rawbufs) == len(lin.membufs) == 2
assert all(r is not None for r in rawbufs)
assert all(isinstance(r, Buffer) for r in rawbufs)
assert all(r.size > 0 for r in rawbufs)
def test_bufs_from_lin_alt(self):
a = Tensor.randn(4, 4).realize()
b = a+a[0]
si = [si for si in b.schedule() if si.ast.op is UOps.SINK][0]
rawbufs = bufs_from_lin(k:=Kernel(si.ast))
assert len(rawbufs) == len(k.membufs) == 2
assert all(r is not None for r in rawbufs)
assert all(isinstance(r, Buffer) for r in rawbufs)
assert all(r.size > 0 for r in rawbufs)
def test_kernel_count(self):
"""
Ensure that the kernel count is not incremented by time_linearizer when clearing l2
"""
# ast of Tensor.zeros(16).contiguous().realize()
ast = UOp(UOps.SINK, src=(
UOp(UOps.STORE, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=0, src=()),
UOp(UOps.VIEW, arg=ShapeTracker(views=(View(shape=(16,), strides=(1,), offset=0, mask=None, contiguous=True),))),
ast_const(dtypes.float, 0.0, st_src=(
UOp(UOps.VIEW, arg=ShapeTracker(views=(View(shape=(16,), strides=(0,), offset=0, mask=None, contiguous=False),))),)),)),))
lin = Kernel(ast)
bufs = bufs_from_lin(lin)
kernel_count = GlobalCounters.kernel_count
time_linearizer(lin, bufs, allow_test_size=False, cnt=2, disable_cache=True, clear_l2=True)
assert GlobalCounters.kernel_count == kernel_count, "kernel count was incremented by time_linearizer"
class TestBEAM(unittest.TestCase):
def test_dynamic_beam(self):
# TODO: make this infra globally usable
class Capture:
def __init__(self): self.captured = []
def add(self, x): self.captured.append(x)
capturing.append(Capture())
kernel_count = GlobalCounters.kernel_count
with Context(BEAM=1): Tensor.zeros(16).contiguous().realize()
assert GlobalCounters.kernel_count == kernel_count + 1
k_beam_1 = capturing[0].captured
capturing.clear()
capturing.append(Capture())
kernel_count = GlobalCounters.kernel_count
with Context(BEAM=0): Tensor.zeros(16).contiguous().realize()
assert GlobalCounters.kernel_count == kernel_count + 1
k_beam_0 = capturing[0].captured
capturing.clear()
self.assertNotEqual(k_beam_0[-1].prg.p.src, k_beam_1[-1].prg.p.src)
def test_get_kernel_actions(self):
from test.test_linearizer import helper_realized_ast
a = Tensor.rand(4, 3)
b = Tensor.rand(3)
realized_ast, _ = helper_realized_ast(a @ b)
from tinygrad.engine.search import get_kernel_actions
lins = get_kernel_actions(Kernel(realized_ast), False).values()
# ensure amt=0 are not duplicated
if Opt(OptOps.UPCAST, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.UPCAST, axis=0, amt=4)]) == 0, "did not de-dup UPCAST"
if Opt(OptOps.LOCAL, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.LOCAL, axis=0, amt=4)]) == 0, "did not de-dup LOCAL"
if Opt(OptOps.UNROLL, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.UNROLL, axis=0, amt=3)]) == 0, "did not de-dup UNROLL"
if Opt(OptOps.GROUP, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.GROUP, axis=0, amt=3)]) == 0, "did not de-dup GROUP"
if Opt(OptOps.GROUPTOP, 0, 0) in actions:
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.GROUPTOP, axis=0, amt=3)]) == 0, "did not de-dup GROUPTOP"
def test_filter_global_buffer(self):
# taken from https://github.com/tinygrad/tinygrad/issues/4612
ast = UOp(UOps.SINK, dtypes.void, arg=None, src=(
UOp(UOps.STORE, dtypes.void, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=0, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(1, 1, 256), strides=(0, 0, 1), offset=0, mask=None, contiguous=True),)), src=()), # noqa: E501
UOp(UOps.REDUCE_AXIS, dtypes.float, arg=(BinaryOps.MAX, (1,)), src=(
UOp(UOps.ALU, dtypes.float, arg=BinaryOps.MUL, src=(
UOp(UOps.ALU, dtypes.float, arg=BinaryOps.ADD, src=(
UOp(UOps.ALU, dtypes.float, arg=BinaryOps.ADD, src=(
UOp(UOps.ALU, dtypes.float, arg=BinaryOps.ADD, src=(
UOp(UOps.ALU, dtypes.float, arg=BinaryOps.ADD, src=(
UOp(UOps.ALU, dtypes.float, arg=BinaryOps.ADD, src=(
UOp(UOps.LOAD, dtypes.float, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=1, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=0, mask=((0, 64128),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))), src=()),)), # noqa: E501
UOp(UOps.LOAD, dtypes.float, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=2, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-64128, mask=((64128, 128256),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))), src=()),)),)), # noqa: E501
UOp(UOps.LOAD, dtypes.float, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=3, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-128256, mask=((128256, 192384),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))), src=()),)),)), # noqa: E501
UOp(UOps.LOAD, dtypes.float, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=4, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-192384, mask=((192384, 256512),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))), src=()),)),)), # noqa: E501
UOp(UOps.LOAD, dtypes.float, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=5, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-256512, mask=((256512, 320640),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))), src=()),)),)), # noqa: E501
UOp(UOps.LOAD, dtypes.float, arg=None, src=(
UOp(UOps.DEFINE_GLOBAL, dtypes.float.ptr(), arg=6, src=()),
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(384768,), strides=(1,), offset=-320640, mask=((320640, 384768),), contiguous=False), View(shape=(1, 501, 256), strides=(0, 1, 501), offset=256512, mask=None, contiguous=False))), src=()),)),)), # noqa: E501
ast_const(dtypes.float, 1.4285714285714286, st_src=(
UOp(UOps.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(1, 501, 256), strides=(0, 0, 0), offset=0, mask=None, contiguous=False),)), src=()),)),)),)),)),)) # noqa: E501
lin = Kernel(ast)
bufs = bufs_from_lin(lin)
best_lin = beam_search(lin, bufs, 3)
assert best_lin
# need disable_cache to trigger.
tm = time_linearizer(best_lin, bufs, allow_test_size=False, cnt=2, disable_cache=True)
assert tm
def test_beam_unnamed_kernels(self):
a = Tensor.rand(100)
b = Tensor.rand(100)
si = (a+b).schedule()[-1]
lin = Kernel(si.ast)
bufs = bufs_from_lin(lin)
# TODO: beam should have better instrumentation so we don't have to check this indirect thing
kcount = len(Kernel.kernel_cnt)
beam_search(lin, bufs, 3, disable_cache=True)
self.assertEqual(kcount, len(Kernel.kernel_cnt))
if __name__ == '__main__':
unittest.main()