tinygrad/test/test_assign.py

381 lines
12 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad import dtypes, Tensor, TinyJit, GlobalCounters, Variable
N = 200 # has to be bigger than the cache to fail
class TestAssign(unittest.TestCase):
def test_simple_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
b.realize()
ba1 = a.lazydata.base.realized
bb1 = b.lazydata.base.realized
a += b
a.realize()
ba2 = a.lazydata.base.realized
assert ba1 == ba2 and ba1 != bb1
np.testing.assert_allclose(a.numpy(), (np.arange(N*N)*2).reshape((N,N)))
def test_assign_zeros_good(self):
a = Tensor.zeros(10,10).contiguous()
a.assign(Tensor.ones(10,10))
b = Tensor.zeros(10,10).contiguous()
a.realize()
np.testing.assert_allclose(b.numpy(), 0)
def test_assign_zeros(self):
a = Tensor.zeros(10,10).contiguous()
b = Tensor.zeros(10,10).contiguous()
a.assign(Tensor.ones(10,10))
a.realize()
np.testing.assert_allclose(b.numpy(), 0)
def test_assign_add(self):
def f(x):
x += 1
x.realize()
x = Tensor([0])
f(x)
assert x.item() == 1
def test_assign_add_twice(self):
# NOTE: this has two kernels
def f(x):
x += 1
x += 1
x.realize()
x = Tensor([0])
f(x)
assert x.item() == 2
def test_assign_add_double(self):
def f(x):
x += 1
x.realize()
x = Tensor([0])
f(x)
out = x.item()
assert out == 1, f"expected 1, got {out}"
x = Tensor([0])
f(x)
out = x.item()
assert out == 1, f"expected 1, got {out}"
def test_assign_add_jit(self):
@TinyJit
def f(x):
x += 1
x.realize()
x = Tensor([0])
for _ in range(5): f(x)
assert x.item() == 5
def test_assign_add_jit_other(self):
@TinyJit
def f(x):
x += 1
x.realize()
x = Tensor([0])
for _ in range(5): f(x)
assert x.item() == 5
y = Tensor([0])
for _ in range(4): f(y)
assert y.item() == 4
def test_assign_other_jit(self):
@TinyJit
def f(x, a):
x.assign(a)
x.realize()
x = Tensor([0])
for i in range(1, 6):
f(x, x.full_like(i).contiguous()) # const would be implicitly folded without contiguous
assert x.item() == i
def test_assign_add_other_jit(self):
@TinyJit
def f(x, a):
x += a
x.realize()
x = Tensor([0])
a = 0
for i in range(1, 6):
a += i
f(x, x.full_like(i).contiguous())
assert x.item() == a
def test_assign_changes(self):
a = Tensor.ones(4).contiguous().realize()
old_a = a
a.assign(Tensor.full((4,), 2.).contiguous())
# NOTE: old_a is now 2, and this would match the behavior of pytorch
new = a + old_a
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_cycle(self):
# NOTE: should *not* raise AssertionError from numpy
with self.assertRaisesRegex(RuntimeError, "cycle"):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.).contiguous())
new = a + (times_a-1)
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_contiguous_cycle(self):
with self.assertRaisesRegex(RuntimeError, "cycle"):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.))
new = a.contiguous() + times_a-1
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_possible(self):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.))
new = a + (times_a-1).contiguous()
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_possible_contiguous(self):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.).contiguous())
new = a + (times_a-1).contiguous()
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_both_contiguous(self):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.))
new = a.contiguous() + (times_a-1).contiguous()
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_alt(self):
a = Tensor.ones(4).contiguous().realize()
a.assign(Tensor.full((4,), 2.).contiguous())
times_a = a*3
new = a + times_a
np.testing.assert_allclose(new.numpy(), 8)
def test_double_assign(self):
a = Tensor.ones(4).contiguous().realize()
a += 1
a += 1
np.testing.assert_allclose(a.numpy(), 3)
def test_crossover_assign(self):
a = Tensor.full((4,), 2).contiguous().realize()
b = Tensor.full((4,), 3).contiguous().realize()
a += b
b += a
Tensor.realize(a,b)
np.testing.assert_allclose(a.numpy(), 5)
np.testing.assert_allclose(b.numpy(), 8)
def test_assign_double_diamond(self):
a = Tensor.full((4,), 2).contiguous().realize()
b = Tensor.full((4,), 3).contiguous().realize()
a_prev = a*4
b_prev = b+3
b += a_prev.contiguous()
a += b_prev.contiguous()
Tensor.realize(a, b)
np.testing.assert_equal(b.numpy(), 11)
np.testing.assert_equal(a.numpy(), 8)
def test_assign_double_diamond_reduce(self):
a0 = Tensor.full((16, 16), 10).contiguous().realize()
a1 = Tensor.full((16, 16), 20).contiguous().realize()
b0 = Tensor.full((16, ), 1).contiguous().realize()
b1 = Tensor.full((16, ), 2).contiguous().realize()
r0 = (a0 - b1.contiguous()).sum(1)
r1 = (a1 - b0.contiguous()).sum(1)
b0.assign(r0 * b0)
b1.assign(r1 * b1)
Tensor.realize(b0, b1)
np.testing.assert_equal(b0.numpy(), 128)
np.testing.assert_equal(b1.numpy(), 608)
def test_crossunder_assign(self):
# NOTE: should *not* raise AssertionError from numpy
with self.assertRaisesRegex(RuntimeError, "cycle"):
a = Tensor.full((4,), 2).contiguous().realize()
b = Tensor.full((4,), 3).contiguous().realize()
c = a+9
a += b
b += c
Tensor.realize(a,b)
np.testing.assert_allclose(a.numpy(), 2+3)
np.testing.assert_allclose(b.numpy(), 3+2+9)
def test_assign_kv_cache(self):
bsz, max_context = 2, 8
class Attn:
@TinyJit
def __call__(self, xk:Tensor, start_pos:Variable):
seqlen = xk.shape[1]
if not hasattr(self, "cache_k"):
self.cache_k = Tensor.zeros(bsz, max_context, 1, 1).contiguous()
keys = self.cache_k.shrink((None, (0, start_pos), None, None)).cat(xk, dim=1).contiguous() if start_pos > 0 else xk
self.cache_k.assign(keys.pad((None,(0,max_context-start_pos-seqlen),None,None)).contiguous()).realize()
attn = Attn()
xk = Tensor.ones(bsz, 3, 1, 1).contiguous()
attn(xk, 0)
for i in range(3,6):
# copied from LLaMA
start_pos = Variable("start_pos", 1, max_context).bind(i)
xk = Tensor.ones(bsz, 1, 1, 1).contiguous()
attn(xk, start_pos)
out = attn.cache_k.flatten().numpy()
np.testing.assert_allclose(out, [1.,1.,1.,1.,1.,1.,0.,0.,1.,1.,1.,1.,1.,1.,0.,0.])
def test_assign_contiguous(self):
b = Tensor.rand(4,4).realize()
a = (Tensor.rand(4,4).realize() + 1)
kc = GlobalCounters.kernel_count
b.assign(a.contiguous()).realize()
assert GlobalCounters.kernel_count - kc == 2
def test_assign_contiguous_permute(self):
b = Tensor.rand(4,4).realize()
a = (Tensor.rand(4,4).realize() + 1).permute((1,0))
kc = GlobalCounters.kernel_count
b.assign(a.contiguous()).realize()
assert GlobalCounters.kernel_count - kc == 2
def test_permuted_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
b.realize()
ba1 = a.lazydata.base.realized
bb1 = b.lazydata.base.realized
with self.assertRaises((RuntimeError, AssertionError)):
a = a.permute(1,0)
a += b
a.realize()
ba2 = a.lazydata.base.realized
assert ba1 != ba2 and ba1 != bb1
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
def test_post_permuted_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
b.realize()
#GlobalCounters.cache = []
ba1 = a.lazydata.base.realized # noqa: F841
bb1 = b.lazydata.base.realized # noqa: F841
with self.assertRaisesRegex(RuntimeError, "contiguous"):
a.assign(a.permute(1,0) + b) # this should not work!
a.realize()
ba2 = a.lazydata.base.realized # noqa: F841
# NOTE: don't test that it's assigned
#assert ba1 == ba2 and ba1 != bb1
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
def test_simple_assignment_multioutput(self):
a = Tensor.randn(32, 32).realize()
b = Tensor.full((32, ), 1.).contiguous().realize()
c = Tensor.full((32, ), 2.).contiguous().realize()
d = Tensor.full((32, ), 3.).contiguous().realize()
r = a.sum(axis=1)
b.assign(r + b)
c.assign(r + c)
d.assign(r + d)
kc = GlobalCounters.kernel_count
Tensor.realize(b, c, d)
assert GlobalCounters.kernel_count - kc == 1
np.testing.assert_allclose(b.numpy(), a.sum(1).numpy()+1)
np.testing.assert_allclose(c.numpy(), a.sum(1).numpy()+2)
np.testing.assert_allclose(d.numpy(), a.sum(1).numpy()+3)
# NOTE: if the assign target is read/write in a single kernel, it should be contiguous
def test_permuted_assignment_correct(self):
a = Tensor.arange(4 * 4).reshape(4, 4).contiguous().realize()
b = Tensor.arange(4 * 4).reshape(4, 4).contiguous().realize()
# TODO: scheduler limitation, should NOT raise AssertionError from numpy.
with self.assertRaisesRegex(RuntimeError, "contiguous"):
a = a.permute(1, 0)
new_val = a + b
a.assign(new_val)
np.testing.assert_equal(a.numpy(), np.arange(4 * 4).reshape(4, 4).transpose(1, 0) + np.arange(4 * 4).reshape(4, 4))
def test_permuted_reduceop_child_dual_use(self):
a = Tensor.randn(32, 32, 32).realize()
b = Tensor.full((32, 32), 1.).contiguous().realize()
with self.assertRaisesRegex(RuntimeError, "contiguous"):
r = a.sum(axis=1)
b.assign(r + b.permute(1, 0))
b.realize()
def test_permuted_reduceop_multioutput_dual_use(self):
a = Tensor.randn(32, 32, 32).realize()
b = Tensor.full((32, 32), 1.).contiguous().realize()
c = Tensor.full((32, 32), 2.).contiguous().realize()
with self.assertRaisesRegex(RuntimeError, "contiguous"):
r = a.sum(axis=1)
b_perm = b.permute(1, 0)
b.assign(r + b)
c.assign(r + b_perm)
Tensor.realize(b, c)
def test_permuted_reduceop_multioutput_dual_use_possible(self):
a = Tensor.randn(32, 32, 32, dtype=dtypes.int).realize()
b = Tensor.arange(32 * 32).reshape(32, 32).realize()
c = Tensor.arange(32 * 32).reshape(32, 32).realize()
kc = GlobalCounters.kernel_count
r = a.sum(axis=1)
b_perm = b.permute(1, 0)
b.assign(r + b)
c.assign(r + b_perm.contiguous())
Tensor.realize(b, c)
assert GlobalCounters.kernel_count - kc == 2
np.testing.assert_equal(b.numpy(), a.numpy().sum(1) + np.arange(32 * 32).reshape(32, 32))
np.testing.assert_equal(c.numpy(), a.numpy().sum(1) + np.arange(32 * 32).reshape(32, 32).transpose(1, 0))
def test_permuted_assignment_masked_view_possible(self):
a = Tensor.ones(4, 4).contiguous().realize()
b = a.shrink((None, (0, 2))).pad((None, (0, 2)), 2)
a.assign(a + b)
kc = GlobalCounters.kernel_count
a.realize()
assert GlobalCounters.kernel_count - kc == 1
np.testing.assert_equal(a.numpy(), np.ones((4, 4))+np.pad(np.ones((4, 4))[:, 0:2], ((0, 0), (0, 2)), constant_values=2))
def test_permuted_assignment_masked_view_not_contiguous(self):
a = Tensor.ones(4, 4).contiguous().realize()
with self.assertRaisesRegex(RuntimeError, "contiguous"):
b = a.shrink((None, (0, 2))).pad((None, (0, 2)), 2).permute(1, 0)
a.assign(a + b)
a.realize()
# TODO: is there a way to sneak in a permute such that it returns the wrong answer?
@unittest.skip("don't use output buffer, and mismatch dtype no longer supported")
def test_cast_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
oba1 = a.lazydata.base.output_buffer
a.assign(a.cast(dtypes.int32).realize())
a.realize()
oba2 = a.lazydata.base.output_buffer
assert oba1 is None and oba2 is None
np.testing.assert_allclose(a.numpy(), np.arange(N*N,dtype=np.int32).reshape((N,N)))
if __name__ == "__main__":
unittest.main()