tinygrad/extra/multitensor.py

60 lines
1.9 KiB
Python

import numpy as np
from tinygrad import Tensor, Device, GlobalCounters
from tinygrad.helpers import Timing
d0, d1 = f"{Device.DEFAULT}:1", f"{Device.DEFAULT}:2"
N = 256
FLOPS = N*N*N*2
# LazyBuffer should make three fields lists: self.st (all must have the same shape), self.realized, and self.device
def explicit_shard_W_axis_1(X, W):
Xs = [X.to(d0), X.to(d1)]
Ws = [W[:, :N//2].to(d0), W[:, N//2:].to(d1)] # TODO: these shouldn't make copies on the original device
# pad them to form the correct size
Ws = [Ws[0].pad((None, (0,N//2))), Ws[1].pad((None, (N//2,0)))]
for x in Xs: assert x.shape == X.shape
for w in Ws: assert w.shape == W.shape
# TODO: it shouldn't be faster with these realize
for x in Xs+Ws: x.realize()
def lm(x:Tensor, w:Tensor):
# these are movement ops on the local device
x = x.reshape(N, 1, N).expand(N, N, N)
w = w.T.reshape(1, N, N).expand(N, N, N)
m = x*w
assert m.lazydata.st.views[0].mask is not None
ret = m.sum(2)
return ret
#Os = [lm(Xs[0], Ws[0]), lm(Xs[1], Ws[1])]
Os = [Xs[0] @ Ws[0], Xs[1] @ Ws[1]]
for x in Os: x.realize()
return Os[0].to(Device.DEFAULT) + Os[1].to(Device.DEFAULT)
#return Tensor.cat(*[x.to(Device.DEFAULT) for x in Os], dim=1) # TODO: someday we can remove this copy too
def matmul(X, W):
return explicit_shard_W_axis_1(X, W)
#return X@W
if __name__ == "__main__":
with Timing("init devices: "):
Device[d0], Device[d1]
with Timing("create tensors: "):
X = Tensor.kaiming_uniform(N, N).realize()
W = Tensor.kaiming_uniform(N, N).realize()
#with Timing("warmup: "):
# O = matmul(X, W).numpy()
GlobalCounters.reset()
print("******** multiply start")
with Timing("******** multiply done: ", lambda x: f" {FLOPS/x:.2f} GFLOPS"):
O = matmul(X, W).realize()
Device[Device.DEFAULT].synchronize()
with Timing("testing: "):
val = X.numpy() @ W.numpy()
np.testing.assert_allclose(val, O.numpy(), atol=1e-5)