mirror of https://github.com/commaai/tinygrad.git
237 lines
11 KiB
Python
237 lines
11 KiB
Python
import math
|
|
from tinygrad.helpers import flatten, get_child
|
|
import tinygrad.nn as nn
|
|
from extra.models.resnet import ResNet
|
|
import numpy as np
|
|
|
|
def nms(boxes, scores, thresh=0.5):
|
|
x1, y1, x2, y2 = np.rollaxis(boxes, 1)
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
to_process, keep = scores.argsort()[::-1], []
|
|
while to_process.size > 0:
|
|
cur, to_process = to_process[0], to_process[1:]
|
|
keep.append(cur)
|
|
inter_x1 = np.maximum(x1[cur], x1[to_process])
|
|
inter_y1 = np.maximum(y1[cur], y1[to_process])
|
|
inter_x2 = np.minimum(x2[cur], x2[to_process])
|
|
inter_y2 = np.minimum(y2[cur], y2[to_process])
|
|
inter_area = np.maximum(0, inter_x2 - inter_x1 + 1) * np.maximum(0, inter_y2 - inter_y1 + 1)
|
|
iou = inter_area / (areas[cur] + areas[to_process] - inter_area)
|
|
to_process = to_process[np.where(iou <= thresh)[0]]
|
|
return keep
|
|
|
|
def decode_bbox(offsets, anchors):
|
|
dx, dy, dw, dh = np.rollaxis(offsets, 1)
|
|
widths, heights = anchors[:, 2] - anchors[:, 0], anchors[:, 3] - anchors[:, 1]
|
|
cx, cy = anchors[:, 0] + 0.5 * widths, anchors[:, 1] + 0.5 * heights
|
|
pred_cx, pred_cy = dx * widths + cx, dy * heights + cy
|
|
pred_w, pred_h = np.exp(dw) * widths, np.exp(dh) * heights
|
|
pred_x1, pred_y1 = pred_cx - 0.5 * pred_w, pred_cy - 0.5 * pred_h
|
|
pred_x2, pred_y2 = pred_cx + 0.5 * pred_w, pred_cy + 0.5 * pred_h
|
|
return np.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis=1, dtype=np.float32)
|
|
|
|
def generate_anchors(input_size, grid_sizes, scales, aspect_ratios):
|
|
assert len(scales) == len(aspect_ratios) == len(grid_sizes)
|
|
anchors = []
|
|
for s, ar, gs in zip(scales, aspect_ratios, grid_sizes):
|
|
s, ar = np.array(s), np.array(ar)
|
|
h_ratios = np.sqrt(ar)
|
|
w_ratios = 1 / h_ratios
|
|
ws = (w_ratios[:, None] * s[None, :]).reshape(-1)
|
|
hs = (h_ratios[:, None] * s[None, :]).reshape(-1)
|
|
base_anchors = (np.stack([-ws, -hs, ws, hs], axis=1) / 2).round()
|
|
stride_h, stride_w = input_size[0] // gs[0], input_size[1] // gs[1]
|
|
shifts_x, shifts_y = np.meshgrid(np.arange(gs[1]) * stride_w, np.arange(gs[0]) * stride_h)
|
|
shifts_x = shifts_x.reshape(-1)
|
|
shifts_y = shifts_y.reshape(-1)
|
|
shifts = np.stack([shifts_x, shifts_y, shifts_x, shifts_y], axis=1, dtype=np.float32)
|
|
anchors.append((shifts[:, None] + base_anchors[None, :]).reshape(-1, 4))
|
|
return anchors
|
|
|
|
class RetinaNet:
|
|
def __init__(self, backbone: ResNet, num_classes=264, num_anchors=9, scales=None, aspect_ratios=None):
|
|
assert isinstance(backbone, ResNet)
|
|
scales = tuple((i, int(i*2**(1/3)), int(i*2**(2/3))) for i in 2**np.arange(5, 10)) if scales is None else scales
|
|
aspect_ratios = ((0.5, 1.0, 2.0),) * len(scales) if aspect_ratios is None else aspect_ratios
|
|
self.num_anchors, self.num_classes = num_anchors, num_classes
|
|
assert len(scales) == len(aspect_ratios) and all(self.num_anchors == len(s) * len(ar) for s, ar in zip(scales, aspect_ratios))
|
|
|
|
self.backbone = ResNetFPN(backbone)
|
|
self.head = RetinaHead(self.backbone.out_channels, num_anchors=num_anchors, num_classes=num_classes)
|
|
self.anchor_gen = lambda input_size: generate_anchors(input_size, self.backbone.compute_grid_sizes(input_size), scales, aspect_ratios)
|
|
|
|
def __call__(self, x):
|
|
return self.forward(x)
|
|
def forward(self, x):
|
|
return self.head(self.backbone(x))
|
|
|
|
def load_from_pretrained(self):
|
|
model_urls = {
|
|
(50, 1, 64): "https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth",
|
|
(50, 32, 4): "https://zenodo.org/record/6605272/files/retinanet_model_10.zip",
|
|
}
|
|
self.url = model_urls[(self.backbone.body.num, self.backbone.body.groups, self.backbone.body.base_width)]
|
|
from torch.hub import load_state_dict_from_url
|
|
state_dict = load_state_dict_from_url(self.url, progress=True, map_location='cpu')
|
|
state_dict = state_dict['model'] if 'model' in state_dict.keys() else state_dict
|
|
for k, v in state_dict.items():
|
|
obj = get_child(self, k)
|
|
dat = v.detach().numpy()
|
|
assert obj.shape == dat.shape, (k, obj.shape, dat.shape)
|
|
obj.assign(dat)
|
|
|
|
# predictions: (BS, (H1W1+...+HmWm)A, 4 + K)
|
|
def postprocess_detections(self, predictions, input_size=(800, 800), image_sizes=None, orig_image_sizes=None, score_thresh=0.05, topk_candidates=1000, nms_thresh=0.5):
|
|
anchors = self.anchor_gen(input_size)
|
|
grid_sizes = self.backbone.compute_grid_sizes(input_size)
|
|
split_idx = np.cumsum([int(self.num_anchors * sz[0] * sz[1]) for sz in grid_sizes[:-1]])
|
|
detections = []
|
|
for i, predictions_per_image in enumerate(predictions):
|
|
h, w = input_size if image_sizes is None else image_sizes[i]
|
|
|
|
predictions_per_image = np.split(predictions_per_image, split_idx)
|
|
offsets_per_image = [br[:, :4] for br in predictions_per_image]
|
|
scores_per_image = [cl[:, 4:] for cl in predictions_per_image]
|
|
|
|
image_boxes, image_scores, image_labels = [], [], []
|
|
for offsets_per_level, scores_per_level, anchors_per_level in zip(offsets_per_image, scores_per_image, anchors):
|
|
# remove low scoring boxes
|
|
scores_per_level = scores_per_level.flatten()
|
|
keep_idxs = scores_per_level > score_thresh
|
|
scores_per_level = scores_per_level[keep_idxs]
|
|
|
|
# keep topk
|
|
topk_idxs = np.where(keep_idxs)[0]
|
|
num_topk = min(len(topk_idxs), topk_candidates)
|
|
sort_idxs = scores_per_level.argsort()[-num_topk:][::-1]
|
|
topk_idxs, scores_per_level = topk_idxs[sort_idxs], scores_per_level[sort_idxs]
|
|
|
|
# bbox coords from offsets
|
|
anchor_idxs = topk_idxs // self.num_classes
|
|
labels_per_level = topk_idxs % self.num_classes
|
|
boxes_per_level = decode_bbox(offsets_per_level[anchor_idxs], anchors_per_level[anchor_idxs])
|
|
# clip to image size
|
|
clipped_x = boxes_per_level[:, 0::2].clip(0, w)
|
|
clipped_y = boxes_per_level[:, 1::2].clip(0, h)
|
|
boxes_per_level = np.stack([clipped_x, clipped_y], axis=2).reshape(-1, 4)
|
|
|
|
image_boxes.append(boxes_per_level)
|
|
image_scores.append(scores_per_level)
|
|
image_labels.append(labels_per_level)
|
|
|
|
image_boxes = np.concatenate(image_boxes)
|
|
image_scores = np.concatenate(image_scores)
|
|
image_labels = np.concatenate(image_labels)
|
|
|
|
# nms for each class
|
|
keep_mask = np.zeros_like(image_scores, dtype=bool)
|
|
for class_id in np.unique(image_labels):
|
|
curr_indices = np.where(image_labels == class_id)[0]
|
|
curr_keep_indices = nms(image_boxes[curr_indices], image_scores[curr_indices], nms_thresh)
|
|
keep_mask[curr_indices[curr_keep_indices]] = True
|
|
keep = np.where(keep_mask)[0]
|
|
keep = keep[image_scores[keep].argsort()[::-1]]
|
|
|
|
# resize bboxes back to original size
|
|
image_boxes = image_boxes[keep]
|
|
if orig_image_sizes is not None:
|
|
resized_x = image_boxes[:, 0::2] * orig_image_sizes[i][1] / w
|
|
resized_y = image_boxes[:, 1::2] * orig_image_sizes[i][0] / h
|
|
image_boxes = np.stack([resized_x, resized_y], axis=2).reshape(-1, 4)
|
|
# xywh format
|
|
image_boxes = np.concatenate([image_boxes[:, :2], image_boxes[:, 2:] - image_boxes[:, :2]], axis=1)
|
|
|
|
detections.append({"boxes":image_boxes, "scores":image_scores[keep], "labels":image_labels[keep]})
|
|
return detections
|
|
|
|
class ClassificationHead:
|
|
def __init__(self, in_channels, num_anchors, num_classes):
|
|
self.num_classes = num_classes
|
|
self.conv = flatten([(nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1), lambda x: x.relu()) for _ in range(4)])
|
|
self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, padding=1)
|
|
def __call__(self, x):
|
|
out = [self.cls_logits(feat.sequential(self.conv)).permute(0, 2, 3, 1).reshape(feat.shape[0], -1, self.num_classes) for feat in x]
|
|
return out[0].cat(*out[1:], dim=1).sigmoid()
|
|
|
|
class RegressionHead:
|
|
def __init__(self, in_channels, num_anchors):
|
|
self.conv = flatten([(nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1), lambda x: x.relu()) for _ in range(4)])
|
|
self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, padding=1)
|
|
def __call__(self, x):
|
|
out = [self.bbox_reg(feat.sequential(self.conv)).permute(0, 2, 3, 1).reshape(feat.shape[0], -1, 4) for feat in x]
|
|
return out[0].cat(*out[1:], dim=1)
|
|
|
|
class RetinaHead:
|
|
def __init__(self, in_channels, num_anchors, num_classes):
|
|
self.classification_head = ClassificationHead(in_channels, num_anchors, num_classes)
|
|
self.regression_head = RegressionHead(in_channels, num_anchors)
|
|
def __call__(self, x):
|
|
pred_bbox, pred_class = self.regression_head(x), self.classification_head(x)
|
|
out = pred_bbox.cat(pred_class, dim=-1)
|
|
return out
|
|
|
|
class ResNetFPN:
|
|
def __init__(self, resnet, out_channels=256, returned_layers=[2, 3, 4]):
|
|
self.out_channels = out_channels
|
|
self.body = resnet
|
|
in_channels_list = [(self.body.in_planes // 8) * 2 ** (i - 1) for i in returned_layers]
|
|
self.fpn = FPN(in_channels_list, out_channels)
|
|
|
|
# this is needed to decouple inference from postprocessing (anchors generation)
|
|
def compute_grid_sizes(self, input_size):
|
|
return np.ceil(np.array(input_size)[None, :] / 2 ** np.arange(3, 8)[:, None])
|
|
|
|
def __call__(self, x):
|
|
out = self.body.bn1(self.body.conv1(x)).relu()
|
|
out = out.pad2d([1,1,1,1]).max_pool2d((3,3), 2)
|
|
out = out.sequential(self.body.layer1)
|
|
p3 = out.sequential(self.body.layer2)
|
|
p4 = p3.sequential(self.body.layer3)
|
|
p5 = p4.sequential(self.body.layer4)
|
|
return self.fpn([p3, p4, p5])
|
|
|
|
class ExtraFPNBlock:
|
|
def __init__(self, in_channels, out_channels):
|
|
self.p6 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
|
|
self.p7 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
|
|
self.use_P5 = in_channels == out_channels
|
|
|
|
def __call__(self, p, c):
|
|
p5, c5 = p[-1], c[-1]
|
|
x = p5 if self.use_P5 else c5
|
|
p6 = self.p6(x)
|
|
p7 = self.p7(p6.relu())
|
|
p.extend([p6, p7])
|
|
return p
|
|
|
|
class FPN:
|
|
def __init__(self, in_channels_list, out_channels, extra_blocks=None):
|
|
self.inner_blocks, self.layer_blocks = [], []
|
|
for in_channels in in_channels_list:
|
|
self.inner_blocks.append(nn.Conv2d(in_channels, out_channels, kernel_size=1))
|
|
self.layer_blocks.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
|
|
self.extra_blocks = ExtraFPNBlock(256, 256) if extra_blocks is None else extra_blocks
|
|
|
|
def __call__(self, x):
|
|
last_inner = self.inner_blocks[-1](x[-1])
|
|
results = [self.layer_blocks[-1](last_inner)]
|
|
for idx in range(len(x) - 2, -1, -1):
|
|
inner_lateral = self.inner_blocks[idx](x[idx])
|
|
|
|
# upsample to inner_lateral's shape
|
|
(ih, iw), (oh, ow), prefix = last_inner.shape[-2:], inner_lateral.shape[-2:], last_inner.shape[:-2]
|
|
eh, ew = math.ceil(oh / ih), math.ceil(ow / iw)
|
|
inner_top_down = last_inner.reshape(*prefix, ih, 1, iw, 1).expand(*prefix, ih, eh, iw, ew).reshape(*prefix, ih*eh, iw*ew)[:, :, :oh, :ow]
|
|
|
|
last_inner = inner_lateral + inner_top_down
|
|
results.insert(0, self.layer_blocks[idx](last_inner))
|
|
if self.extra_blocks is not None:
|
|
results = self.extra_blocks(results, x)
|
|
return results
|
|
|
|
if __name__ == "__main__":
|
|
from extra.models.resnet import ResNeXt50_32X4D
|
|
backbone = ResNeXt50_32X4D()
|
|
retina = RetinaNet(backbone)
|
|
retina.load_from_pretrained()
|