mirror of https://github.com/commaai/tinygrad.git
93 lines
3.7 KiB
Python
93 lines
3.7 KiB
Python
import math
|
|
from typing import List
|
|
from tinygrad.nn.optim import Optimizer
|
|
from tinygrad.tensor import Tensor
|
|
|
|
class LR_Scheduler:
|
|
def __init__(self, optimizer: Optimizer):
|
|
self.optimizer = optimizer
|
|
self.epoch_counter = Tensor([0], requires_grad=False, device=self.optimizer.device)
|
|
|
|
def get_lr(self): pass
|
|
|
|
def step(self) -> None:
|
|
self.epoch_counter.assign(self.epoch_counter + 1).realize()
|
|
self.optimizer.lr.assign(self.get_lr()).realize()
|
|
|
|
class LRSchedulerGroup:
|
|
def __init__(self, *schedulers: LR_Scheduler): self.schedulers = schedulers
|
|
def step(self) -> None:
|
|
for s in self.schedulers: s.step()
|
|
|
|
class MultiStepLR(LR_Scheduler):
|
|
def __init__(self, optimizer: Optimizer, milestones: List[int], gamma=0.1):
|
|
super().__init__(optimizer)
|
|
self.milestones = milestones
|
|
self.gamma = gamma
|
|
|
|
def get_lr(self) -> Tensor:
|
|
if self.epoch_counter.numpy()[0] not in self.milestones:
|
|
return self.optimizer.lr
|
|
return self.optimizer.lr * self.gamma
|
|
|
|
class ReduceLROnPlateau(LR_Scheduler):
|
|
def __init__(self, optimizer: Optimizer, mode="min", factor=0.1, patience=10, threshold=1e-4, threshold_mode="rel"):
|
|
assert mode in ["min", "max"] and threshold_mode in ["rel", "abs"]
|
|
super().__init__(optimizer)
|
|
self.mode, self.factor, self.patience, self.threshold, self.threshold_mode = mode, factor, patience, threshold, threshold_mode
|
|
self.best = float('inf') if mode == "min" else float('-inf')
|
|
self.bad_epoch = 0
|
|
|
|
if mode == "min": self.threshold *= -1
|
|
|
|
def is_better(self, current: float) -> bool:
|
|
dynamic_threshold = self.best*(1+self.threshold) if self.threshold_mode == "rel" else self.best+self.threshold
|
|
if self.mode == "min":
|
|
return current < dynamic_threshold
|
|
return current > dynamic_threshold
|
|
|
|
def step(self, current: float) -> None:
|
|
self.epoch_counter.assign(self.epoch_counter + 1).realize()
|
|
if self.is_better(current):
|
|
self.bad_epoch = 0
|
|
self.best = current
|
|
else:
|
|
self.bad_epoch += 1
|
|
|
|
if self.bad_epoch > self.patience:
|
|
self.optimizer.lr *= self.factor
|
|
self.bad_epoch = 0
|
|
|
|
class CosineAnnealingLR(LR_Scheduler):
|
|
def __init__(self, optimizer: Optimizer, T_max: int, eta_min=0):
|
|
super().__init__(optimizer)
|
|
self.T_max = T_max
|
|
self.eta_min = eta_min
|
|
self.eta_max = optimizer.lr.numpy()[0]
|
|
|
|
def get_lr(self) -> Tensor:
|
|
lr = self.eta_min + 0.5 * (self.eta_max - self.eta_min) * (1 + math.cos((self.epoch_counter.numpy()[0]/self.T_max) * math.pi))
|
|
return Tensor([lr], device=self.optimizer.device, dtype=self.optimizer.lr.dtype)
|
|
|
|
class OneCycleLR(LR_Scheduler):
|
|
def __init__(self, optimizer: Optimizer, max_lr: float, div_factor: float, final_div_factor: float, total_steps: int, pct_start: float,
|
|
anneal_strategy: str = 'linear', cycle_momentum: bool = False):
|
|
super().__init__(optimizer)
|
|
self.initial_lr = max_lr / div_factor
|
|
self.max_lr = max_lr
|
|
self.min_lr = self.initial_lr / final_div_factor
|
|
self.total_steps = total_steps
|
|
self.pct_start = pct_start
|
|
assert anneal_strategy == 'linear', 'only linear annealing supported'
|
|
assert not cycle_momentum, 'cycle momentum not supported'
|
|
self.optimizer.lr.assign(self.get_lr()).realize() # update the initial LR
|
|
|
|
@staticmethod
|
|
def _annealing_linear(start: float, end: float, pct: Tensor) -> Tensor: return (pct*(end-start)+start)
|
|
|
|
def get_lr(self) -> Tensor:
|
|
return (self.epoch_counter < self.total_steps*self.pct_start).where(
|
|
self._annealing_linear(self.initial_lr, self.max_lr, self.epoch_counter/(self.total_steps*self.pct_start)),
|
|
self._annealing_linear(self.max_lr, self.min_lr, (self.epoch_counter-(self.total_steps*self.pct_start))/(self.total_steps*(1-self.pct_start)))
|
|
).cast(self.optimizer.lr.dtype)
|