import ast import numpy as np from PIL import Image from tinygrad.tensor import Tensor from tinygrad.helpers import getenv, fetch from extra.models.vit import ViT """ fn = "gs://vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz" import tensorflow as tf with tf.io.gfile.GFile(fn, "rb") as f: dat = f.read() with open("cache/"+ fn.rsplit("/", 1)[1], "wb") as g: g.write(dat) """ Tensor.training = False if getenv("LARGE", 0) == 1: m = ViT(embed_dim=768, num_heads=12) else: # tiny m = ViT(embed_dim=192, num_heads=3) m.load_from_pretrained() # category labels lbls = ast.literal_eval(fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt").read_text()) #url = "https://upload.wikimedia.org/wikipedia/commons/4/41/Chicken.jpg" url = "https://repository-images.githubusercontent.com/296744635/39ba6700-082d-11eb-98b8-cb29fb7369c0" # junk img = Image.open(fetch(url)) aspect_ratio = img.size[0] / img.size[1] img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0)))) img = np.array(img) y0,x0=(np.asarray(img.shape)[:2]-224)//2 img = img[y0:y0+224, x0:x0+224] img = np.moveaxis(img, [2,0,1], [0,1,2]) img = img.astype(np.float32)[:3].reshape(1,3,224,224) img /= 255.0 img -= 0.5 img /= 0.5 out = m.forward(Tensor(img)) outnp = out.numpy().ravel() choice = outnp.argmax() print(out.shape, choice, outnp[choice], lbls[choice])