import sys import numpy as np from tinygrad import Tensor, Device, dtypes from tinygrad.engine.realize import Runner from tinygrad.dtype import DType from tinygrad.nn.state import get_parameters from tinygrad.helpers import Context, CI, OSX, getenv def derandomize_model(model): with Context(GRAPH=0): for p in get_parameters(model): p.lazydata = Tensor.empty(p.shape, device=p.device, dtype=p.dtype).lazydata p.realize() def assert_jit_cache_len(fxn, expected_len): assert len(fxn.jit_cache) > 0 # until we have a better way of typing the prg in ExecItem if issubclass(type(fxn.jit_cache[0].prg), Runner) and not type(fxn.jit_cache[0].prg).__name__.endswith('Graph'): assert len(fxn.jit_cache) == expected_len else: assert len(fxn.jit_cache) == 1 # until we have a better way of typing the prg in ExecItem assert type(fxn.jit_cache[0].prg).__name__.endswith('Graph') assert len(fxn.jit_cache[0].prg.jit_cache) == expected_len def is_dtype_supported(dtype: DType, device: str = Device.DEFAULT): if dtype == dtypes.bfloat16: # NOTE: this requires bf16 buffer support return device in {"HSA", "AMD"} or (device in {"CUDA", "NV"} and not CI and not getenv("PTX")) if device in ["WEBGPU", "WEBGL"]: return dtype in [dtypes.float, dtypes.int32, dtypes.uint32] if device == "CUDA" and getenv("PTX") and dtype in (dtypes.int8, dtypes.uint8): return False # for CI GPU and OSX, cl_khr_fp16 isn't supported # for CI LLVM, it segfaults because it can't link to the casting function # CUDACPU architecture is sm_35 but we need at least sm_70 to run fp16 ALUs # PYTHON supports half memoryview in 3.12+ https://github.com/python/cpython/issues/90751 if dtype == dtypes.half: if device == "GPU": return not CI and not OSX if device in ["LLVM", "CUDA", "NV"]: return not CI if device == "PYTHON": return sys.version_info >= (3, 12) if dtype == dtypes.float64: return device != "METAL" and not (OSX and device == "GPU") return True def rand_for_dtype(dt:DType, size:int): if dtypes.is_unsigned(dt): return np.random.randint(0, 100, size=size, dtype=dt.np) elif dtypes.is_int(dt): return np.random.randint(-100, 100, size=size, dtype=dt.np) elif dt == dtypes.bool: return np.random.choice([True, False], size=size) return np.random.uniform(-10, 10, size=size).astype(dt.np)