import unittest, ctypes, struct from tinygrad import Device, Tensor, dtypes from tinygrad.helpers import CI, getenv from tinygrad.device import Buffer, BufferOptions, HCQCompiled from tinygrad.engine.schedule import create_schedule from tinygrad.engine.realize import get_runner, CompiledRunner from tinygrad.codegen.kernel import Kernel, Opt, OptOps MOCKGPU = getenv("MOCKGPU") @unittest.skipUnless(issubclass(type(Device[Device.DEFAULT]), HCQCompiled), "HCQ device required to run") class TestHCQ(unittest.TestCase): @classmethod def setUpClass(self): TestHCQ.d0 = Device[Device.DEFAULT] TestHCQ.a = Tensor([0.,1.], device=Device.DEFAULT).realize() TestHCQ.b = self.a + 1 si = create_schedule([self.b.lazydata])[-1] TestHCQ.runner = get_runner(TestHCQ.d0.dname, si.ast) TestHCQ.b.lazydata.buffer.allocate() TestHCQ.kernargs_ba_ptr = TestHCQ.runner.clprg.fill_kernargs([TestHCQ.b.lazydata.buffer._buf, TestHCQ.a.lazydata.buffer._buf]) TestHCQ.kernargs_ab_ptr = TestHCQ.runner.clprg.fill_kernargs([TestHCQ.a.lazydata.buffer._buf, TestHCQ.b.lazydata.buffer._buf]) def setUp(self): TestHCQ.d0.synchronize() TestHCQ.a.lazydata.buffer.copyin(memoryview(bytearray(struct.pack("ff", 0, 1)))) TestHCQ.b.lazydata.buffer.copyin(memoryview(bytearray(struct.pack("ff", 0, 0)))) TestHCQ.d0.synchronize() # wait for copyins to complete # Test signals def test_signal(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): queue_type().signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 def test_signal_update(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): q = queue_type().signal(TestHCQ.d0.signal_t(), 0x1000) q.update_signal(0, signal=TestHCQ.d0.timeline_signal, value=TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 q.update_signal(0, value=TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 # Test wait def test_wait(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): fake_signal = TestHCQ.d0.signal_t() fake_signal.value = 1 queue_type().wait(fake_signal, 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 @unittest.skipIf(MOCKGPU, "Can't handle async update on MOCKGPU for now") def test_wait_late_set(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): fake_signal = TestHCQ.d0.signal_t() queue_type().wait(fake_signal, 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) with self.assertRaises(RuntimeError): TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value, timeout=500) fake_signal.value = 1 TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 def test_wait_update(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): fake_signal = TestHCQ.d0.signal_t() q = queue_type().wait(TestHCQ.d0.timeline_signal, 0xffffffff).signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) fake_signal.value = 0x30 q.update_wait(0, signal=fake_signal, value=0x30).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 # Test exec def test_exec_one_kernel(self): TestHCQ.d0.hw_compute_queue_t().exec(TestHCQ.runner.clprg, TestHCQ.kernargs_ba_ptr, TestHCQ.runner.p.global_size, TestHCQ.runner.p.local_size) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert (val:=TestHCQ.b.lazydata.buffer.as_buffer().cast("f")[0]) == 1.0, f"got val {val}" def test_exec_2_kernels_100_times(self): q = TestHCQ.d0.hw_compute_queue_t() q.wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .exec(TestHCQ.runner.clprg, TestHCQ.kernargs_ba_ptr, TestHCQ.runner.p.global_size, TestHCQ.runner.p.local_size) \ .exec(TestHCQ.runner.clprg, TestHCQ.kernargs_ab_ptr, TestHCQ.runner.p.global_size, TestHCQ.runner.p.local_size) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) for _ in range(100): q.update_wait(0, value=TestHCQ.d0.timeline_value - 1).update_signal(3, value=TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_value += 1 assert (val:=TestHCQ.a.lazydata.buffer.as_buffer().cast("f")[0]) == 200.0, f"got val {val}" def test_exec_update(self): q = TestHCQ.d0.hw_compute_queue_t() q.exec(TestHCQ.runner.clprg, TestHCQ.kernargs_ba_ptr, TestHCQ.runner.p.global_size, TestHCQ.runner.p.local_size) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) q.update_exec(0, (1,1,1), (1,1,1)) q.submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert (val:=TestHCQ.b.lazydata.buffer.as_buffer().cast("f")[0]) == 1.0, f"got val {val}" assert (val:=TestHCQ.b.lazydata.buffer.as_buffer().cast("f")[1]) == 0.0, f"got val {val}, should not be updated" def test_exec_update_fuzz(self): a = Tensor.rand((3, 3, 3), dtype=dtypes.int, device=Device.DEFAULT).realize() b = a + 1 si = create_schedule([b.lazydata])[-1] k = Kernel(si.ast, opts=TestHCQ.d0.renderer) for i in range(3): k.apply_opt(Opt(op=OptOps.LOCAL, axis=0, amt=3)) runner = CompiledRunner(k.to_program()) zb = Buffer(Device.DEFAULT, 3 * 3 * 3, dtypes.int, options=BufferOptions(cpu_access=True, nolru=True)).ensure_allocated() zt = Buffer(Device.DEFAULT, 3 * 3 * 3, dtypes.int, options=BufferOptions(cpu_access=True, nolru=True)).ensure_allocated() ctypes.memset(zb._buf.va_addr, 0, zb.nbytes) kernargs = runner.clprg.fill_kernargs([zt._buf, zb._buf]) q = TestHCQ.d0.hw_compute_queue_t() q.memory_barrier() \ .exec(runner.clprg, kernargs, (1,1,1), (1,1,1)) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) for x in range(1, 4): for y in range(1, 4): for z in range(1, 4): ctypes.memset(zt._buf.va_addr, 0, zb.nbytes) q.update_exec(1, local_size=(x,y,z)) \ .update_signal(2, value=TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 res_sum = sum(x for x in zt.as_buffer().cast("I")) assert x * y * z == res_sum, f"want {x * y * z}, got {res_sum}" # Test copy def test_copy(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(TestHCQ.b.lazydata.buffer._buf.va_addr, TestHCQ.a.lazydata.buffer._buf.va_addr, 8) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert (val:=TestHCQ.b.lazydata.buffer.as_buffer().cast("f")[1]) == 1.0, f"got val {val}" def test_copy_long(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") sz = 64 << 20 buf1 = Buffer(Device.DEFAULT, sz, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(Device.DEFAULT, sz, dtypes.int8, options=BufferOptions(host=True, nolru=True)).ensure_allocated() ctypes.memset(buf2._buf.va_addr, 1, sz) TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(buf1._buf.va_addr, buf2._buf.va_addr, sz) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 mv_buf1 = buf1.as_buffer().cast('Q') for i in range(sz//8): assert mv_buf1[i] == 0x0101010101010101, f"offset {i*8} differs, not all copied, got {hex(mv_buf1[i])}" def test_update_copy(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") q = TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(0x0, 0x0, 8) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) q.update_copy(1, dest=TestHCQ.b.lazydata.buffer._buf.va_addr, src=TestHCQ.a.lazydata.buffer._buf.va_addr) \ .submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert (val:=TestHCQ.b.lazydata.buffer.as_buffer().cast("f")[1]) == 1.0, f"got val {val}" def test_update_copy_long(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") sz = 64 << 20 buf1 = Buffer(Device.DEFAULT, sz, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(Device.DEFAULT, sz, dtypes.int8, options=BufferOptions(host=True, nolru=True)).ensure_allocated() ctypes.memset(buf2._buf.va_addr, 1, sz) q = TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(0x0, 0x0, sz) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) q.update_copy(1, buf1._buf.va_addr, buf2._buf.va_addr) \ .submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 mv_buf1 = buf1.as_buffer().cast('Q') for i in range(sz//8): assert mv_buf1[i] == 0x0101010101010101, f"offset {i*8} differs, not all copied, got {hex(mv_buf1[i])}" # Test bind api def test_bind(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): fake_signal = TestHCQ.d0.signal_t() q = queue_type().wait(TestHCQ.d0.timeline_signal, 0xffffffff).signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value) q.bind(TestHCQ.d0) fake_signal.value = 0x30 q.update_wait(0, signal=fake_signal, value=0x30).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 # Test multidevice def test_multidevice_signal_wait(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") d1 = Device[f"{Device.DEFAULT}:1"] TestHCQ.d0.hw_copy_queue_t().signal(sig:=TestHCQ.d0.signal_t(value=0), value=0xfff) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) d1.hw_copy_queue_t().wait(sig, value=0xfff) \ .signal(d1.timeline_signal, d1.timeline_value).submit(d1) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 d1.timeline_signal.wait(d1.timeline_value) d1.timeline_value += 1 # Test profile api def test_speed_exec_time(self): TestHCQ.d0._prof_setup() sig_st, sig_en = TestHCQ.d0.signal_t(), TestHCQ.d0.signal_t() TestHCQ.d0.hw_compute_queue_t().timestamp(sig_st) \ .exec(TestHCQ.runner.clprg, TestHCQ.kernargs_ba_ptr, TestHCQ.runner.p.global_size, TestHCQ.runner.p.local_size) \ .timestamp(sig_en) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 et = TestHCQ.d0._gpu2cpu_time(sig_en.timestamp, True) - TestHCQ.d0._gpu2cpu_time(sig_st.timestamp, True) print(f"exec kernel time: {et:.2f} us") assert 1 <= et <= (2500 if CI else 20) def test_speed_copy_bandwidth(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") TestHCQ.d0._prof_setup() # THEORY: the bandwidth is low here because it's only using one SDMA queue. I suspect it's more stable like this at least. SZ = 2_000_000_000 a = Buffer(Device.DEFAULT, SZ, dtypes.uint8, options=BufferOptions(nolru=True)).allocate() b = Buffer(Device.DEFAULT, SZ, dtypes.uint8, options=BufferOptions(nolru=True)).allocate() sig_st, sig_en = TestHCQ.d0.signal_t(), TestHCQ.d0.signal_t() TestHCQ.d0.hw_copy_queue_t().timestamp(sig_st) \ .copy(a._buf.va_addr, b._buf.va_addr, SZ) \ .timestamp(sig_en) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 et = TestHCQ.d0._gpu2cpu_time(sig_en.timestamp, True) - TestHCQ.d0._gpu2cpu_time(sig_st.timestamp, True) et_ms = et / 1e3 gb_s = ((SZ / 1e9) / et_ms) * 1e3 print(f"same device copy: {et_ms:.2f} ms, {gb_s:.2f} GB/s") assert (0.3 if CI else 10) <= gb_s <= 1000 def test_speed_cross_device_copy_bandwidth(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") TestHCQ.d0._prof_setup() SZ = 2_000_000_000 b = Buffer(f"{Device.DEFAULT}:1", SZ, dtypes.uint8, options=BufferOptions(nolru=True)).allocate() a = Buffer(Device.DEFAULT, SZ, dtypes.uint8, options=BufferOptions(nolru=True)).allocate() TestHCQ.d0._gpu_map(b._buf) sig_st, sig_en = TestHCQ.d0.signal_t(), TestHCQ.d0.signal_t() TestHCQ.d0.hw_copy_queue_t().timestamp(sig_st) \ .copy(a._buf.va_addr, b._buf.va_addr, SZ) \ .timestamp(sig_en) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 et = TestHCQ.d0._gpu2cpu_time(sig_en.timestamp, True) - TestHCQ.d0._gpu2cpu_time(sig_st.timestamp, True) et_ms = et / 1e3 gb_s = ((SZ / 1e9) / et_ms) * 1e3 print(f"cross device copy: {et_ms:.2f} ms, {gb_s:.2f} GB/s") assert (0.3 if CI else 2) <= gb_s <= 50 def test_timeline_signal_rollover(self): for queue_type in [TestHCQ.d0.hw_compute_queue_t, TestHCQ.d0.hw_copy_queue_t]: if queue_type is None: continue with self.subTest(name=str(queue_type)): TestHCQ.d0.timeline_value = (1 << 32) - 20 # close value to reset queue_type().signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value - 1) for _ in range(40): queue_type().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_value += 1 TestHCQ.d0.synchronize() def test_small_copies_from_host_buf(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") buf1 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(host=True, nolru=True)).ensure_allocated() for i in range(256): ctypes.memset(buf2._buf.va_addr, i, 1) TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(buf1._buf.va_addr, buf2._buf.va_addr, 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert buf1.as_buffer()[0] == i def test_small_copies_from_host_buf_intercopy(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") buf1 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf3 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(host=True, nolru=True)).ensure_allocated() for i in range(256): ctypes.memset(buf3._buf.va_addr, i, 1) TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(buf1._buf.va_addr, buf3._buf.va_addr, 1) \ .copy(buf2._buf.va_addr, buf1._buf.va_addr, 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert buf2.as_buffer()[0] == i def test_small_copies_from_host_buf_transfer(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") _ = Device[f"{Device.DEFAULT}:1"] buf1 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(f"{Device.DEFAULT}:1", 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf3 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(host=True, nolru=True)).ensure_allocated() TestHCQ.d0.allocator.map(buf2._buf) for i in range(256): ctypes.memset(buf3._buf.va_addr, i, 1) TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(buf1._buf.va_addr, buf3._buf.va_addr, 1) \ .copy(buf2._buf.va_addr, buf1._buf.va_addr, 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert buf2.as_buffer()[0] == i def test_memory_barrier(self): a = Tensor([0, 1], device=Device.DEFAULT, dtype=dtypes.int8).realize() b = a + 1 runner = get_runner(TestHCQ.d0.dname, create_schedule([b.lazydata])[-1].ast) buf1 = Buffer(Device.DEFAULT, 2, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(Device.DEFAULT, 2, dtypes.int8, options=BufferOptions(cpu_access=True, nolru=True)).ensure_allocated() kernargs_ptr = runner.clprg.fill_kernargs([buf1._buf, buf2._buf]) for i in range(255): ctypes.memset(buf2._buf.va_addr, i, 2) # Need memory_barrier after direct write to vram TestHCQ.d0.hw_compute_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .memory_barrier() \ .exec(runner.clprg, kernargs_ptr, runner.p.global_size, runner.p.local_size) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert buf1.as_buffer()[0] == (i + 1), f"has {buf1.as_buffer()[0]}, need {i + 1}" def test_memory_barrier_before_copy(self): if TestHCQ.d0.hw_copy_queue_t is None: self.skipTest("device does not support copy queue") buf1 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf2 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(nolru=True)).ensure_allocated() buf3 = Buffer(Device.DEFAULT, 1, dtypes.int8, options=BufferOptions(cpu_access=True, nolru=True)).ensure_allocated() for i in range(256): ctypes.memset(buf3._buf.va_addr, i, 1) # Need memory_barrier after direct write to vram TestHCQ.d0.hw_compute_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .memory_barrier() \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_value += 1 TestHCQ.d0.hw_copy_queue_t().wait(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value - 1) \ .copy(buf1._buf.va_addr, buf3._buf.va_addr, 1) \ .copy(buf2._buf.va_addr, buf1._buf.va_addr, 1) \ .signal(TestHCQ.d0.timeline_signal, TestHCQ.d0.timeline_value).submit(TestHCQ.d0) TestHCQ.d0.timeline_signal.wait(TestHCQ.d0.timeline_value) TestHCQ.d0.timeline_value += 1 assert buf2.as_buffer()[0] == i if __name__ == "__main__": unittest.main()