# this is an example of how you can write terrible DSP compute breaking ops like warpPerspective # here we use a CUSTOM op to write atan2 import unittest import numpy as np from typing import Optional, Tuple from tinygrad.helpers import prod from tinygrad.dtype import dtypes # *** first, we implement the atan2 op at the lowest level *** # `atan2_gpu` for GPUBuffers and `atan2_cpu` for CPUBuffers from tinygrad.lazy import Buffer, create_lazybuffer from tinygrad.device import Device from tinygrad.shape.shapetracker import ShapeTracker from tinygrad.engine.realize import CompiledRunner from tinygrad.renderer import Program # we don't always have GPU support, so the type signature is the abstract CompiledBuffer instead of GPUBuffer def atan2_gpu(ret:Buffer, a:Buffer, b:Buffer): assert a.dtype == b.dtype and a.dtype == dtypes.float32, "gpu function only supports float32" src = """ __kernel void atan2_gpu(global float *c, global float *a, global float *b) { int idx = get_global_id(0); c[idx] = atan2(a[idx], b[idx]); }""" CompiledRunner(Program("atan2_gpu", src, ret.device, global_size=[ret.size,1,1])).exec([ret, a, b]) def atan2_cpu(ret:Buffer, a:Buffer, b:Buffer): ret.copyin(np.require(np.arctan2(a._buf, b._buf), requirements='C').data) # *** second, we write the ATan2 mlop *** # NOTE: The derivative of atan2 doesn't need a custom op! https://www.liquisearch.com/atan2/derivative # In general, it is also optional to write a backward function, just your backward pass won't work without it from tinygrad.ops import MetaOps, BinaryOps, UnaryOps from tinygrad.lazy import LazyBuffer from tinygrad.tensor import Function class ATan2(Function): def forward(self, a:LazyBuffer, b:LazyBuffer) -> LazyBuffer: assert prod(a.shape) == prod(b.shape) and a.device == b.device, "shape or device mismatch" self.a, self.b = a, b return create_lazybuffer(a.device, ShapeTracker.from_shape(a.shape), max(a.dtype, b.dtype), MetaOps.CUSTOM, arg={"GPU": atan2_gpu, "CPU": atan2_cpu}[a.device], srcs=(a.contiguous(), b.contiguous())) def backward(self, grad_output:LazyBuffer) -> Tuple[Optional[LazyBuffer], Optional[LazyBuffer]]: recip = (self.a.e(BinaryOps.MUL, self.a)).e(BinaryOps.ADD, self.b.e(BinaryOps.MUL, self.b)).e(UnaryOps.RECIP) return grad_output.e(BinaryOps.MUL, self.b.e(BinaryOps.MUL, recip)) if self.needs_input_grad[0] else None, \ grad_output.e(BinaryOps.MUL, self.a.const(0).e(BinaryOps.ADD, self.a.e(UnaryOps.NEG)).e(BinaryOps.MUL, recip)) \ if self.needs_input_grad[1] else None # *** third, we use our lovely new mlop in some tests *** from tinygrad.tensor import Tensor @unittest.skipUnless(Device.DEFAULT in ["CPU", "GPU"], "atan2 is only implemented for CPU and GPU") class TestCustomFunction(unittest.TestCase): def test_atan2_forward(self): # create some random Tensors, permute them just because we can a = Tensor.randn(4,4,requires_grad=True).permute(1,0) b = Tensor.randn(4,4,requires_grad=True).permute(1,0) # run the forward pass. note: up until the .numpy(), it's all lazy c = ATan2.apply(a, b) print(c.numpy()) # check the forward pass (in numpy) np.testing.assert_allclose(c.numpy(), np.arctan2(a.numpy(), b.numpy()), atol=1e-5) # fun fact, this never actually calls forward, so it works in all the backends def test_atan2_backward(self): # have to go forward before we can go backward a = Tensor.randn(4,4,requires_grad=True).permute(1,0) b = Tensor.randn(4,4,requires_grad=True).permute(1,0) c = ATan2.apply(a, b) # run the backward pass c.mean().backward() assert a.grad is not None and b.grad is not None, "tinygrad didn't compute gradients" print(a.grad.numpy()) print(b.grad.numpy()) # check the backward pass (in torch) import torch ta, tb = torch.tensor(a.numpy(), requires_grad=True), torch.tensor(b.numpy(), requires_grad=True) tc = torch.atan2(ta, tb) tc.mean().backward() assert ta.grad is not None and tb.grad is not None, "torch didn't compute gradients" np.testing.assert_allclose(a.grad.numpy(), ta.grad.numpy(), atol=1e-5) np.testing.assert_allclose(b.grad.numpy(), tb.grad.numpy(), atol=1e-5) @unittest.skipIf(Device.DEFAULT in ["CPU"], "atan2_cpu not jittable") def test_atan2_jit(self): # custom ops even work in the JIT! from tinygrad.engine.jit import TinyJit @TinyJit def jitted_atan2(a:Tensor, b:Tensor) -> Tensor: return ATan2.apply(a, b).realize() for _ in range(5): a = Tensor.randn(4,4,requires_grad=True).permute(1,0) b = Tensor.randn(4,4,requires_grad=True).permute(1,0) c = jitted_atan2(a, b) np.testing.assert_allclose(c.numpy(), np.arctan2(a.numpy(), b.numpy()), atol=1e-5) if __name__ == "__main__": unittest.main()