import unittest import numpy as np from tinygrad.tensor import Tensor from tinygrad.helpers import Context class TestConv(unittest.TestCase): def test_simple(self): x = Tensor.ones(1,12,128,256).contiguous().realize() w = Tensor.ones(32,12,3,3).contiguous().realize() ret = x.conv2d(w, stride=(2,2), padding=(1,1)).numpy() # it's not 108 around the padding assert (ret[:, :, 1:-1, 1:-1] == 108).all() assert ret[0,0,0,0] == 48 assert ret[0,0,0,1] == 72 def test_simple_rand(self): x = Tensor.rand(1,12,128,256) w = Tensor.rand(32,12,3,3) x.conv2d(w, stride=(2,2), padding=(1,1)).numpy() def test_many_simple(self): x = Tensor(np.arange(8*2*8).reshape(1,8,2,8).astype(np.float32)) #w = Tensor(np.arange(8*8*1*1).reshape(8,8,1,1).astype(np.float32)) w = Tensor.eye(8).reshape((8,8,1,1)) ret = x.conv2d(w, stride=(1,2), padding=(0,0)).numpy() print(ret) def test_lazycache(self): Tensor.no_grad = True x = Tensor.rand(1, 32) y = Tensor.rand(32) out = x + y.reshape((1,32,1)).reshape((1,32)) + y.reshape((1,32,1)).reshape((1,32)) out.numpy() Tensor.no_grad = False def test_simple_biased(self): C = 8 x = Tensor.rand(1,C,5,5) w = Tensor.eye(C).reshape((C,C,1,1)) b = Tensor(np.arange(C).astype(np.float32)) ret = Tensor.conv2d(x,w,b).relu().conv2d(w,b) print(ret.numpy()) def test_two_binops_no_rerun_small(self): Tensor.no_grad = True x = Tensor.rand(1,1,32,32) w = Tensor.rand(1,1,3,3) out = x.conv2d(w, padding=(1,1)) np.testing.assert_allclose(out.relu().numpy(), np.maximum(out.numpy(), 0)) Tensor.no_grad = False def test_two_binops_no_rerun(self): Tensor.no_grad = True x = Tensor.randn(1,12,128,256) w = Tensor.randn(32,12,3,3) out = x.conv2d(w, stride=(2,2), padding=(1,1)) r1, r2 = out.relu(), (out-1) np.testing.assert_allclose(r1.numpy(), np.maximum(out.numpy(), 0)) np.testing.assert_allclose(r2.numpy(), out.numpy() - 1) Tensor.no_grad = False def test_two_overlapping_binops_no_rerun(self): Tensor.no_grad = True x = Tensor.randn(1,12,128,256) w = Tensor.randn(32,12,3,3) out = x.conv2d(w, stride=(2,2), padding=(1,1)) r1, r2 = out.relu(), out.elu() np.testing.assert_allclose(r1.numpy(), np.maximum(out.numpy(), 0)) np.testing.assert_allclose(r2.numpy(), np.where(out.numpy() > 0, out.numpy(), (np.exp(out.numpy()) - 1)), atol=1e-5) Tensor.no_grad = False def test_two_overlapping_binops_no_rerun_wino(self): Tensor.no_grad = True with Context(WINO=1): x = Tensor.randn(1,4,16,16) w = Tensor.randn(6,4,3,3) out = x.conv2d(w, padding=(1,1)) r1, r2 = out.relu(), out.elu() np.testing.assert_allclose(r1.numpy(), np.maximum(out.numpy(), 0)) np.testing.assert_allclose(r2.numpy(), np.where(out.numpy() > 0, out.numpy(), (np.exp(out.numpy()) - 1)), atol=1e-5) Tensor.no_grad = False def test_first_three(self): Tensor.no_grad = True x = Tensor.rand(1,12,128,256) w = Tensor.rand(32,12,3,3) x = x.conv2d(w, stride=(2,2), padding=(1,1)).elu() w = Tensor.rand(32,1,3,3) x = x.conv2d(w, padding=(1,1), groups=32).elu() w = Tensor.rand(16,32,1,1) x = x.conv2d(w).elu() x = x.numpy() print(x.shape) Tensor.no_grad = False def test_elu(self): Tensor.no_grad = True x = Tensor.rand(1,12,128,256) w = Tensor.rand(32,12,3,3) x = x.conv2d(w, stride=(2,2), padding=(1,1)) x = x.elu() w = Tensor.rand(32,1,3,3) x = x.conv2d(w, padding=(1,1), groups=32) x.numpy() Tensor.no_grad = False def test_reduce_relu(self): Tensor.no_grad = True x = Tensor.rand(1,12,128,256) x = x.sum(keepdim=True).relu() x.numpy() Tensor.no_grad = False def test_bias(self): Tensor.no_grad = True from tinygrad.nn import Conv2d x = Tensor.rand(1,12,128,256) c = Conv2d(12, 32, 3) x = c(x).relu() w = Tensor.uniform(32, 1, 3, 3) x = x.conv2d(w, groups=32) x.numpy() Tensor.no_grad = False def test_multiadd(self): w = Tensor.rand(32) x = Tensor.rand(32).relu() (w+x).numpy() def test_reorder(self): x = Tensor.rand(1,12,128,256) w = Tensor.rand(12,12,3,3) x = x.conv2d(w, padding=(1,1)) print(x.shape) x = x.reshape((1, 12, 256, 128)) x += 1 x += 1 x = x.reshape((1, 12, 128, 256)) x.numpy() if __name__ == '__main__': unittest.main()