from tinygrad.tensor import Tensor from tinygrad.nn import Conv2d, BatchNorm2d from tinygrad.nn.state import get_parameters if __name__ == "__main__": with Tensor.train(): BS, C1, H, W = 4, 16, 224, 224 C2, K, S, P = 64, 7, 2, 1 x = Tensor.uniform(BS, C1, H, W) conv = Conv2d(C1, C2, kernel_size=K, stride=S, padding=P) bn = BatchNorm2d(C2, track_running_stats=False) for t in get_parameters([x, conv, bn]): t.realize() print("running network") x.sequential([conv, bn]).numpy()