#!/usr/bin/env python import unittest import numpy as np from tinygrad import Tensor, dtypes from tinygrad.engine.jit import TinyJit from tinygrad.helpers import CI from test.helpers import derandomize_model from examples.llama import Transformer def helper_test_jitted_correctness(gen, train, train_jit): nojit = train(*gen()).numpy() for _ in range(5): jit = train_jit(*gen()).numpy() np.testing.assert_allclose(nojit, jit, rtol=1e-3, atol=1e-5) class TestJittedModels(unittest.TestCase): def test_jitted_tiny_llama(self): old_float = dtypes.default_float dtypes.default_float = dtypes.float16 args_tiny = {"dim": 1024, "hidden_dim": 1024, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-05, "vocab_size": 1000} model = Transformer(**args_tiny) derandomize_model(model) def test(t): return model(t, 0).realize() @TinyJit def test_jit(t): return model(t, 0).realize() helper_test_jitted_correctness(lambda: (Tensor([[1,]]),), test, test_jit) dtypes.default_float = old_float @unittest.skipUnless(not CI, "huge for CI") def test_jitted_stable_diffusion(self): from examples.stable_diffusion import UNetModel, unet_params model = UNetModel(**unet_params) derandomize_model(model) def test(t, t2): return model(t, 801, t2).realize() @TinyJit def test_jit(t, t2): return model(t, 801, t2).realize() helper_test_jitted_correctness(lambda: (Tensor.randn(1, 4, 16, 16),Tensor.randn(1, 77, 768)), test, test_jit) if __name__ == "__main__": unittest.main()