import functools import time import unittest from tinygrad import Tensor, TinyJit, GlobalCounters, Device from tinygrad.helpers import getenv, Context from tinygrad.nn.optim import SGD from tinygrad.nn.state import get_parameters from tinygrad.engine.realize import run_schedule from extra.models import resnet from examples.mlperf.initializers import Conv2dHeNormal, Linear from examples.hlb_cifar10 import UnsyncedBatchNorm # benchmark memory or kernel count: DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # benchmark speed: BEAM=2 JITCNT=10 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # benchmark only one layer: BEAM=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py BenchmarkResnetTrain.test_layer1_2 # inspect: DEBUG=2 BEAM=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # inspect 1x1 convs: DEBUG=2 BEAM=2 CONV=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # inspect 3x3 convs: DEBUG=2 BEAM=2 CONV=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # inspect 3x3 convs with batchnorm: DEBUG=2 BEAM=2 CONV=2 BN=1 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # etc # use ASSIGN=0 to disable batchnorm/optimizer assigns # memory will be slightly high with JITCNT > 1 bs = getenv("BS", 64) class BenchmarkResnetTrain(unittest.TestCase): def _get_layer(self, layer_i, slice_i): # isolate to conv, with or without BN conv = getenv("CONV", 0) bn = getenv("BN", 0) if not hasattr(self, 'model'): resnet.Conv2d = Conv2dHeNormal resnet.Linear = Linear if not getenv("SYNCBN"): resnet.BatchNorm = functools.partial(UnsyncedBatchNorm, num_devices=1) self.model = resnet.ResNet50() self.layers = [self.model.layer1, self.model.layer2, self.model.layer3, self.model.layer4] layer = self.layers[layer_i][slice_i] xy = 112 >> layer_i xy >>= (1 if slice_i > 0 or layer_i == 0 else 0) # layer 1 is preceded by maxpool2d name = f"layer{layer_i+1} slice{slice_i+1}" # get specific conv if conv: convs = [layer.conv1, layer.conv2, layer.conv3] + ([layer.downsample[0]] if layer.downsample else []) bns = [layer.bn1, layer.bn2, layer.bn3] + ([layer.downsample[1]] if layer.downsample else []) f = [convs[conv-1]] if bn: f.append(bns[conv-1]) f.append(Tensor.relu) cin = f[0].in_channels if conv == 3: xy //= convs[1].stride return f"{name} conv{conv} x{str((bs, cin, xy, xy)):20s} k{str(f[0].weight.shape):20s}" + (" bn" if bn else ""), f, cin, xy cin = layer.conv1.in_channels return f"{name} x{(bs, cin, xy, xy)}", [layer], cin, xy def _test_layer(self, name, layer, cin, xy): optim = SGD(get_parameters(layer), bs / 128 * 1.0) # need sgd for some params but not consequential for benchmarking with Context(TRACK_MATCH_STATS=0): Tensor.realize(*[t.assign(t.detach().contiguous()) for t in get_parameters(optim)]) JITCNT = getenv("JITCNT", 1) Tensor.training = True @TinyJit def step(x): optim.zero_grad() x.grad = None y = x.sequential(layer).contiguous().contiguous_backward() y.sum().backward() if getenv("ASSIGN", 1): sched, _ = Tensor.schedule_with_vars(y, x.grad, *optim.schedule_step()) else: sched, _ = Tensor.schedule_with_vars(y, x.grad, *[t.grad for t in optim.params]) for _ in range(JITCNT): run_schedule(list(sched)) CNT = getenv("CNT", 5) best_tm = None flops, mem_used, mem, kernels = None, None, None, None for i in range(CNT): with Context(TRACK_MATCH_STATS=0): x = Tensor.randn(bs, cin, xy, xy, requires_grad=True).realize() GlobalCounters.reset() st = time.perf_counter() step(x) Device[Device.DEFAULT].synchronize() et = time.perf_counter() flops = GlobalCounters.global_ops / JITCNT mem_used = GlobalCounters.mem_used # a little high with JITCNT > 1 fsr mem = GlobalCounters.global_mem / JITCNT if kernels is None: kernels = GlobalCounters.kernel_count // JITCNT tm = (et-st) / JITCNT if best_tm is None or tm < best_tm: best_tm = tm print(f"\r{name:38s}: {best_tm * 1000:>9.2f} ms, {flops / 10**12 / best_tm:>6.2f} tflops, {mem / 10**9 / best_tm:>5.0f} GB/s, " f"{mem_used / 10**9: 6.2f} GB used, {kernels:>5d} kernels") return best_tm, flops, mem, kernels def test_layer1_1(self): self._est(*self._test_layer(*self._get_layer(0, 0)), 1) def test_layer1_2(self): self._est(*self._test_layer(*self._get_layer(0, 1)), 2) def test_layer2_1(self): self._est(*self._test_layer(*self._get_layer(1, 0)), 1) def test_layer2_2(self): self._est(*self._test_layer(*self._get_layer(1, 1)), 3) def test_layer3_1(self): self._est(*self._test_layer(*self._get_layer(2, 0)), 1) def test_layer3_2(self): self._est(*self._test_layer(*self._get_layer(2, 1)), 5) def test_layer4_1(self): self._est(*self._test_layer(*self._get_layer(3, 0)), 1) def test_layer4_2(self): self._est(*self._test_layer(*self._get_layer(3, 1)), 2) est_tm, est_flops, est_mem, est_kernels = 0, 0, 0, 0 @classmethod def _est(cls, tm, flops, mem, kernels, mult): cls.est_tm += tm * mult cls.est_flops += flops * mult cls.est_mem += mem * mult cls.est_kernels += kernels * mult @classmethod def tearDownClass(cls): print(f"\restimated step tm: {cls.est_tm * 1000.0:.2f} ms, {cls.est_flops / 10 ** 12 / cls.est_tm:.3f} tflops, " f"{cls.est_mem / 10 ** 9 / cls.est_tm:.2f} GB/s, {cls.est_kernels} kernels") if __name__ == '__main__': unittest.main()