from tinygrad import Tensor class TransformerBlock: def __init__(self, embed_dim, num_heads, ff_dim, prenorm=False, act=lambda x: x.relu(), dropout=0.1): assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads" self.num_heads = num_heads self.head_size = embed_dim // num_heads self.prenorm, self.act = prenorm, act self.dropout = dropout self.query = (Tensor.scaled_uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.key = (Tensor.scaled_uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.value = (Tensor.scaled_uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.out = (Tensor.scaled_uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.ff1 = (Tensor.scaled_uniform(embed_dim, ff_dim), Tensor.zeros(ff_dim)) self.ff2 = (Tensor.scaled_uniform(ff_dim, embed_dim), Tensor.zeros(embed_dim)) self.ln1 = (Tensor.ones(embed_dim), Tensor.zeros(embed_dim)) self.ln2 = (Tensor.ones(embed_dim), Tensor.zeros(embed_dim)) def attn(self, x): # x: (bs, time, embed_dim) -> (bs, time, embed_dim) query, key, value = [x.linear(*y).reshape(shape=(x.shape[0], -1, self.num_heads, self.head_size)).transpose(1,2) for y in [self.query, self.key, self.value]] attention = Tensor.scaled_dot_product_attention(query, key, value).transpose(1,2) return attention.reshape(shape=(x.shape[0], -1, self.num_heads * self.head_size)).linear(*self.out) def __call__(self, x): if self.prenorm: x = x + self.attn(x.layernorm().linear(*self.ln1)).dropout(self.dropout) x = x + self.act(x.layernorm().linear(*self.ln2).linear(*self.ff1)).linear(*self.ff2).dropout(self.dropout) else: x = x + self.attn(x).dropout(self.dropout) x = x.layernorm().linear(*self.ln1) x = x + self.act(x.linear(*self.ff1)).linear(*self.ff2).dropout(self.dropout) x = x.layernorm().linear(*self.ln2) return x class Transformer: def __init__(self, syms, maxlen, layers, embed_dim, num_heads, ff_dim): self.maxlen, self.syms = maxlen, syms self.embed = Tensor.scaled_uniform(maxlen+syms, embed_dim, requires_grad=False) self.tbs = [TransformerBlock(embed_dim, num_heads, ff_dim) for _ in range(layers)] self.final = Tensor.scaled_uniform(embed_dim, syms) def forward(self, x): bs = x.shape[0] maxlen_eye = Tensor.eye(x.shape[1]) maxlen_eye = maxlen_eye.unsqueeze(0).expand([bs, *maxlen_eye.shape]) onehot_feat = x.one_hot(self.syms) onehot = maxlen_eye.cat(onehot_feat, dim=2).flatten(end_dim=1) x = onehot.dot(self.embed).reshape((bs, x.shape[1], -1)) x = x.sequential(self.tbs) x = x.reshape((-1, x.shape[-1])).dot(self.final).log_softmax() return x.reshape((bs, -1, x.shape[-1]))