import unittest from tinygrad import Tensor, TinyJit, Variable, dtypes import numpy as np class TestSetitem(unittest.TestCase): def test_simple_setitem(self): cases = ( ((6,6), (slice(2,4), slice(3,5)), Tensor.ones(2,2)), ((6,6), (slice(2,4), slice(3,5)), Tensor([1.,2.])), ((6,6), (slice(2,4), slice(3,5)), 1.0), ((6,6), (3, 4), 1.0), ((6,6), (3, None, 4, None), 1.0), ((4,4,4,4), (Ellipsis, slice(1,3), slice(None)), Tensor(4)), ((4,4,4,4), (Ellipsis, slice(1,3)), 4), ((4,4,4,4), (2, slice(1,3), None, 1), 4), ((4,4,4,4), (slice(1,3), slice(None), slice(0,4,2)), 4), ((4,4,4,4), (slice(1,3), slice(None), slice(None), slice(0,3)), 4), ((6,6), (slice(1,5,2), slice(0,5,3)), 1.0), ((6,6), (slice(5,1,-2), slice(5,0,-3)), 1.0), ) for shp, slc, val in cases: t = Tensor.zeros(shp).contiguous() t[slc] = val n = np.zeros(shp) n[slc] = val.numpy() if isinstance(val, Tensor) else val np.testing.assert_allclose(t.numpy(), n) def test_setitem_into_unrealized(self): t = Tensor.arange(4).reshape(2, 2) t[1] = 5 np.testing.assert_allclose(t.numpy(), [[0, 1], [5, 5]]) def test_setitem_dtype(self): for dt in (dtypes.int, dtypes.float, dtypes.bool): for v in (5., 5, True): t = Tensor.ones(6,6, dtype=dt).contiguous() t[1] = v assert t.dtype == dt def test_setitem_into_noncontiguous(self): t = Tensor.ones(4) assert not t.lazydata.st.contiguous with self.assertRaises(RuntimeError): t[1] = 5 def test_setitem_inplace_operator(self): t = Tensor.arange(4).reshape(2, 2).contiguous() t[1] += 2 np.testing.assert_allclose(t.numpy(), [[0, 1], [4, 5]]) t = Tensor.arange(4).reshape(2, 2).contiguous() t[1] -= 1 np.testing.assert_allclose(t.numpy(), [[0, 1], [1, 2]]) t = Tensor.arange(4).reshape(2, 2).contiguous() t[1] *= 2 np.testing.assert_allclose(t.numpy(), [[0, 1], [4, 6]]) # NOTE: have to manually cast setitem target to least_upper_float for div t = Tensor.arange(4, dtype=dtypes.float).reshape(2, 2).contiguous() t[1] /= 2 np.testing.assert_allclose(t.numpy(), [[0, 1], [1, 1.5]]) t = Tensor.arange(4).reshape(2, 2).contiguous() t[1] **= 2 np.testing.assert_allclose(t.numpy(), [[0, 1], [4, 9]]) t = Tensor.arange(4).reshape(2, 2).contiguous() t[1] ^= 5 np.testing.assert_allclose(t.numpy(), [[0, 1], [7, 6]]) @unittest.expectedFailure def test_setitem_consecutive_inplace_operator(self): t = Tensor.arange(4).reshape(2, 2).contiguous() t[1] += 2 t = t.contiguous() # TODO: RuntimeError: must be contiguous for assign ShapeTracker(views=(View(shape=(2,), strides=(1,), offset=2, mask=None, contiguous=False),)) t[1] -= 1 np.testing.assert_allclose(t.numpy(), [[0, 1], [3, 4]]) def test_fancy_setitem(self): t = Tensor.zeros(6,6).contiguous() t[[1,2], [3,2]] = 3 n = np.zeros((6,6)) n[[1,2], [3,2]] = 3 np.testing.assert_allclose(t.numpy(), n) def test_simple_jit_setitem(self): @TinyJit def f(t:Tensor, a:Tensor): t[2:4, 3:5] = a for i in range(1, 6): t = Tensor.zeros(6, 6).contiguous().realize() a = Tensor.full((2, 2), fill_value=i, dtype=dtypes.float).contiguous() f(t, a) n = np.zeros((6, 6)) n[2:4, 3:5] = np.full((2, 2), i) np.testing.assert_allclose(t.numpy(), n) def test_jit_setitem_variable_offset(self): @TinyJit def f(t:Tensor, a:Tensor, v:Variable): t.shrink(((v,v+1), None)).assign(a).realize() t = Tensor.zeros(6, 6).contiguous().realize() n = np.zeros((6, 6)) for i in range(6): v = Variable("v", 0, 6).bind(i) a = Tensor.full((1, 6), fill_value=i+1, dtype=dtypes.float).contiguous() n[i, :] = i+1 f(t, a, v) np.testing.assert_allclose(t.numpy(), n) np.testing.assert_allclose(t.numpy(), [[1,1,1,1,1,1],[2,2,2,2,2,2],[3,3,3,3,3,3],[4,4,4,4,4,4],[5,5,5,5,5,5],[6,6,6,6,6,6]]) class TestWithGrad(unittest.TestCase): def test_no_requires_grad_works(self): z = Tensor.rand(8, 8) x = Tensor.rand(8) z[:3] = x def test_set_into_requires_grad(self): z = Tensor.rand(8, 8, requires_grad=True) x = Tensor.rand(8) with self.assertRaises(NotImplementedError): z[:3] = x def test_set_with_requires_grad(self): z = Tensor.rand(8, 8) x = Tensor.rand(8, requires_grad=True) with self.assertRaises(NotImplementedError): z[:3] = x if __name__ == '__main__': unittest.main()