import unittest, pickle, types import numpy as np from test.helpers import assert_equiv_uops from tinygrad import Tensor, TinyJit, Variable, dtypes from tinygrad.engine.schedule import create_schedule from tinygrad.ops import PatternMatcher, UPat, UOp class TestPickle(unittest.TestCase): def test_pickle_code_object(self): y = lambda x: x*2 # noqa: E731 code_str = pickle.dumps(y.__code__) fxn = types.FunctionType(pickle.loads(code_str), globals()) self.assertEqual(fxn(2), 4) def test_pickle_pattern_matcher(self): pm = PatternMatcher([(UPat.cvar('x'), lambda x: x*2)]) sink = UOp.const(dtypes.int, 2) tt = pm.rewrite(sink) pm_str = pickle.dumps(pm) pm2 = pickle.loads(pm_str) self.assertEqual(pm2.rewrite(sink).key, tt.key) def test_pickle_main_pattern_matcher(self): from tinygrad.codegen.uopgraph import sym pickle.dumps(sym) def test_pickle_realized_tensor(self): t = Tensor.rand(10, 10).realize() st = pickle.dumps(t) t2:Tensor = pickle.loads(st) np.testing.assert_equal(t.numpy(), t2.numpy()) def test_pickle_unrealized_tensor(self): t = Tensor.ones(10, 10) st = pickle.dumps(t) t2:Tensor = pickle.loads(st) np.testing.assert_equal(t.numpy(), t2.numpy()) def test_pickle_variable(self): v = Variable("i", 1, 20).bind(10) t1 = Tensor.ones(10, v).contiguous() t2 = Tensor.ones(10, v).contiguous() ret = (t1+t2).sum(1) st = pickle.dumps(ret) del ret vt2 = pickle.loads(st) np.testing.assert_equal(vt2.numpy(), 20) def test_pickle_buffer_view(self): t = Tensor.arange(10, device="CLANG").contiguous().realize() vt = t[3:5].contiguous().realize() assert hasattr(vt.lazydata.buffer, 'base') ref_value = vt.tolist() st = pickle.dumps(vt) del t, vt vt2 = pickle.loads(st) assert hasattr(vt2.lazydata.buffer, 'base') assert ref_value == vt2.tolist() def test_pickle_numpy(self): t = Tensor(np.array([1,2,3,4.])) st = pickle.dumps(t) t2:Tensor = pickle.loads(st) np.testing.assert_equal(t.numpy(), t2.numpy()) def test_pickle_jit(self): @TinyJit def add(a, b): return a.sum()+b+1 for _ in range(3): add(Tensor.rand(10, 10), Tensor.rand(10, 10)) st = pickle.dumps(add) del add add_fxn = pickle.loads(st) x = Tensor.ones(10, 10).contiguous().realize() y = Tensor.ones(10, 10).contiguous().realize() print("post jit") out = add_fxn(x, y) np.testing.assert_equal(out.numpy(), 102) def test_pickle_schedule(self): a = Tensor([1,2]) out = a + 2 sched = create_schedule([out.lazydata]) pk = pickle.dumps(sched) sched_pk = pickle.loads(pk) assert_equiv_uops(sched_pk[-1].ast, sched[-1].ast) def test_pickle_renderer(self): from tinygrad.device import Device pk = pickle.dumps(Device.default.renderer) pickle.loads(pk) class TestPickleJIT(unittest.TestCase): @classmethod def setUpClass(cls): @TinyJit def add(a, b): return a.sum()+b+1 for _ in range(3): add(Tensor.rand(1000, 1000), Tensor.rand(1000, 1000)) cls.st = pickle.dumps(add) del add def test_inspect(self): import io class FakeClass: def __init__(self, *args, **kwargs): print(self.module, self.name) class InspectUnpickler(pickle.Unpickler): def find_class(self, module, name): return type("SpecializedFakeClass", (FakeClass,), {"name": name, "module": module}) InspectUnpickler(io.BytesIO(self.st)).load() @unittest.skip("we are still saving intermediate buffers") def test_size(self): # confirm no intermediate buffers are saved self.assertLess(len(self.st), 1_000_000) if __name__ == '__main__': unittest.main()