#!/usr/bin/env python import unittest, functools import numpy as np from hypothesis import given, settings, strategies as strat from test.helpers import assert_jit_cache_len from tinygrad.tensor import Tensor from tinygrad.engine.jit import TinyJit from tinygrad.device import Device from tinygrad.helpers import CI, Context from tinygrad.dtype import dtypes from extra.models.unet import ResBlock def _simple_test(add, extract=lambda x: x, N=10): for _ in range(5): a = Tensor.randn(N, N) b = Tensor.randn(N, N) c = add(a, b) np.testing.assert_allclose(extract(c).numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(add, 1) class TestJit(unittest.TestCase): @settings(deadline=2e4) @unittest.skipUnless(Device.DEFAULT in ["LLVM", "CLANG"], f"no support on {Device.DEFAULT}") @given(strat.sampled_from([Tensor.exp2, Tensor.log2, Tensor.sin])) def test_approx_jit_timeout(self, op): with Context(TRANSCENDENTAL=2): model = [ResBlock(16, 24, 16) for _ in range(4)] @TinyJit def fw_approx(t, t2): for l in model: t = l(t, t2) return op(t).realize() fw_approx(Tensor.empty(4, 16, 8, 8), Tensor.empty(1, 24)) def test_simple_jit(self): @TinyJit def add(a, b): return (a+b).realize() _simple_test(add) def test_simple_jit_reset(self): @TinyJit def add(a, b): return (a+b).realize() _simple_test(add) add.reset() _simple_test(add, N=20) def test_simple_jit_norealize(self): @TinyJit def add(a, b): return (a+b) _simple_test(add) def test_simple_jit_norealize_list(self): @TinyJit def add(a, b): return [a+b] _simple_test(add, extract=lambda x: x[0]) def test_simple_jit_norealize_dict(self): @TinyJit def add(a, b): return {"billy": a+b} _simple_test(add, extract=lambda x: x["billy"]) def test_jit_multiple_outputs(self): @TinyJit def f(a, b): return (a+b).realize(), (a-b).realize(), (a*b).realize() for _ in range(5): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) c, d, e = f(a, b) np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5) np.testing.assert_allclose(d.numpy(), a.numpy()-b.numpy(), atol=1e-4, rtol=1e-5) np.testing.assert_allclose(e.numpy(), a.numpy()*b.numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(f, 3) def test_nothing_jitted(self): @TinyJit def add(a, b): return None with self.assertRaises(AssertionError): for _ in range(5): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) add(a, b) def test_jit_zero_does_not_jit(self): @TinyJit def add(a, b): return (a+b).realize() with Context(JIT=0): for i in range(5): a = Tensor([i]) b = Tensor([i]) c = add(a, b) np.testing.assert_allclose(c.numpy(), 2*i) assert_jit_cache_len(add, 0) def test_jit_not_capturing(self): @TinyJit def add(a, b): Tensor.zeros(4, 4).contiguous().realize() # no-op kernel is captured return (a+b).realize() for i in range(5): a = Tensor([i]) b = Tensor([i]) c = add(a, b) np.testing.assert_allclose(c.numpy(), 2*i) assert_jit_cache_len(add, 2) @TinyJit def add2(a, b): with Context(CAPTURING=0): # not captured Tensor.zeros(4, 4).contiguous().realize() return (a+b).realize() for i in range(5): a = Tensor([i]) b = Tensor([i]) c = add2(a, b) np.testing.assert_allclose(c.numpy(), 2*i) assert_jit_cache_len(add2, 1) def test_jit_shape_mismatch(self): @TinyJit def add(a, b): return (a+b).realize() for _ in range(5): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) add(a, b) bad = Tensor.randn(20, 20) with self.assertRaises(AssertionError): add(a, bad) def test_jit_shape_views_mismatch(self): @TinyJit def add(a): return (a+1).realize() with self.assertRaises(AssertionError): for i in range(1,5): # a has an offset that the kernel doesn't know about a = Tensor.randn(10, 10).realize()[:, i:i+2] add(a) def test_jit_duplicate_fail(self): # the jit doesn't support duplicate arguments @TinyJit def add(a, b): return (a+b).realize() a = Tensor.randn(10, 10) with self.assertRaises(AssertionError): add(a, a) def test_kwargs_jit(self): @TinyJit def add_kwargs(first, second): return (first+second).realize() for _ in range(5): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) c = add_kwargs(first=a, second=b) np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(add_kwargs, 1) def test_reorder_kwargs_jit(self): @TinyJit def add_kwargs(first, second): return (first/second).realize() for _ in range(2): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) c = add_kwargs(second=b, first=a) np.testing.assert_allclose(c.numpy(), a.numpy()/b.numpy(), atol=1e-4, rtol=1e-5) for _ in range(2): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) c = add_kwargs(first=a, second=b) np.testing.assert_allclose(c.numpy(), a.numpy()/b.numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(add_kwargs, 1) def test_array_jit(self): @TinyJit def add_array(a, arr): return (a+arr[0]).realize() for i in range(5): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) a.realize(), b.realize() c = add_array(a, [b]) if i >= 2: # should fail once jitted since jit can't handle arrays np.testing.assert_allclose(np.any(np.not_equal(c.numpy(),a.numpy()+b.numpy())), True, atol=1e-4, rtol=1e-5) else: np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(add_array, 1) def test_jit_copyin(self): @TinyJit def f(a): return a + Tensor([1,2,3]) for _ in range(5): b = Tensor.randn(3) c = f(b) np.testing.assert_allclose(c.numpy(), b.numpy()+[1,2,3], atol=1e-4, rtol=1e-5) def test_method_jit(self): class Fun: def __init__(self): self.a = Tensor.randn(10, 10) @TinyJit def __call__(self, b:Tensor) -> Tensor: return (self.a+b).realize() fun = Fun() for _ in range(5): b = Tensor.randn(10, 10) c = fun(b) np.testing.assert_allclose(c.numpy(), fun.a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(fun.__call__.func.__self__, 1) def test_jit_size1_input(self): @TinyJit def f(a, b): return (a+b).realize() a = Tensor([1, 2, 3]) for i in range(5): np.testing.assert_allclose(f(a, Tensor([i])).numpy(), (a+i).numpy(), atol=1e-4, rtol=1e-5) assert_jit_cache_len(f, 1) def test_jit_output_non_tensor_fail(self): @TinyJit def f(a, b, i): return (a+b).realize(), i output1, output2 = [], [] expect1, expect2 = [], [] for i in range(5): a = Tensor.randn(10, 10) b = Tensor.randn(10, 10) o1, o2 = f(a, b, i) output1.append(o1.numpy().copy()) output2.append(o2) expect1.append(a.numpy().copy()+b.numpy().copy()) expect2.append(i) np.testing.assert_allclose(output1, expect1, atol=1e-4, rtol=1e-5) # the jit only works with Tensor outputs assert output2 != expect2 assert_jit_cache_len(f, 1) def test_jit_random_regen(self): def f(a, b): rn = Tensor.randn(*a.shape) return ((a+b)*rn).realize() a = Tensor.randn(10, 10).realize() # realize these before resetting the random seed b = Tensor.randn(10, 10).realize() Tensor.manual_seed(1234) jf = TinyJit(f) res = set() for _ in range(5): o1 = jf(a, b) res.add(o1.numpy()[0][0]) assert len(res) == 5, "All values should be different, rand works in jit." Tensor.manual_seed(1234) jf2 = TinyJit(f) res2 = set() for _ in range(5): o1 = jf2(a, b) res2.add(o1.numpy()[0][0]) assert len(res2) == 5, "All values should be different, rand works in jit." assert res == res2, "Jit rand is not reproducible with the same seed" Tensor.manual_seed(3421) jf3 = TinyJit(f) res3 = set() for _ in range(5): o1 = jf3(a, b) res3.add(o1.numpy()[0][0]) assert len(res3) == 5, "All values should be different, rand works in jit." assert res3 != res2, "Jit rand is diff with diff seeds" def test_jit_multiple_random_regen(self): def f(a, b): rn = Tensor.randn(*a.shape) rn = rn * a rn2 = Tensor.randn(*a.shape) rn2 = rn2 * b rn = rn + rn2 rn2 = rn2 + Tensor.randn(*a.shape) return ((a+b)*rn).realize(), ((a+b)*rn2).realize() a = Tensor.randn(10, 10).realize() # realize these before resetting the random seed b = Tensor.randn(10, 10).realize() Tensor.manual_seed(1234) jf = TinyJit(f) res = set() for _ in range(5): o1, o2 = jf(a, b) res.add(o1.numpy()[0][0]) res.add(o2.numpy()[0][0]) assert len(res) == 10, "All values should be different, rand works in jit." Tensor.manual_seed(1234) jf2 = TinyJit(f) res2 = set() for _ in range(5): o1, o2 = jf2(a, b) res2.add(o1.numpy()[0][0]) res2.add(o2.numpy()[0][0]) assert len(res2) == 10, "All values should be different, rand works in jit." assert res == res2, "Jit rand is not reproducible with the same seed" Tensor.manual_seed(3421) jf3 = TinyJit(f) res3 = set() for _ in range(5): o1, o2 = jf3(a, b) res3.add(o1.numpy()[0][0]) res3.add(o2.numpy()[0][0]) assert len(res3) == 10, "All values should be different, rand works in jit." assert res3 != res2, "Jit rand is diff with diff seeds" def test_jit_random_after_unrealized_random(self): @TinyJit def f(): return Tensor.rand() Tensor.manual_seed(1234) Tensor.rand() res = [f().numpy() for _ in range(3)] assert res[1] != res[2] def test_jit_realization_and_sampling(self): w = Tensor.eye(5) @TinyJit def foo (x): return w.dot(x).realize() arg = [ Tensor([1,2,3,4,5]), Tensor([1,3,3,4,6]), Tensor([1,2,5,4,7]), Tensor([0,2,3,1,0]), ] Y = [foo(e).numpy() for e in arg] foo(Tensor([7,7,7,7,7])) want = [[1., 2., 3., 4., 5.], [1., 3., 3., 4., 6.], [1., 2., 5., 4., 7.], [0., 2., 3., 1., 0.]] np.testing.assert_allclose(want, Y) def test_jit_buffer_behavior(self): @TinyJit def foo(x) -> Tensor: return x.sum().realize() result_1 = foo(Tensor([1] * 2)) result_2 = foo(Tensor([2] * 2)) result_3 = foo(Tensor([3] * 2)) # expect the buffer to share underlying buffer np.testing.assert_allclose(result_1.numpy(), [2], atol=1e-4, rtol=1e-5) np.testing.assert_allclose(result_2.numpy(), [6], atol=1e-4, rtol=1e-5) np.testing.assert_allclose(result_3.numpy(), [6], atol=1e-4, rtol=1e-5) @unittest.skipIf(CI and Device.DEFAULT=="METAL", "no ICB in CI, creation of graph fails") def test_jit_batch_split(self): if Device[Device.DEFAULT].graph is None: raise unittest.SkipTest("only test graphs") # Create long jit with 83 kernels. def f(a, b, c, d, e): for _ in range(80): a = (a+b).realize() y = (a*c).realize() z = (y*d).realize() w = (z*e) return w.realize() a = Tensor.randn(10, 10).realize() b = Tensor.randn(10, 10).realize() c = Tensor.randn(10, 10).realize() d = Tensor.randn(10, 10).realize() e = Tensor.randn(10, 10).realize() jf = TinyJit(f) prev = None for _ in range(5): o = jf(a, b, c, d, e).numpy() if prev is not None: np.testing.assert_allclose(o, prev, atol=1e-4, rtol=1e-5) prev = o graph_t = Device[Device.DEFAULT].graph.func if isinstance(Device[Device.DEFAULT].graph, functools.partial) else Device[Device.DEFAULT].graph # Checking that 2 graphs are inited. assert isinstance(jf.jit_cache[0].prg, graph_t) assert isinstance(jf.jit_cache[1].prg, graph_t) def test_jit_const_inputs(self): @TinyJit def g(x,y,z): return (x+y+z).realize() for i in range(5): np.testing.assert_equal(g(Tensor([i]*3), Tensor.ones(3), Tensor.zeros(3)).numpy(), np.array([i+1]*3)) @unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL", "NV", "AMD"}, "no GPU CI") def test_jitted_transfers(self): d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1" def f(a, b): x = a.to(d1) y = b.to(d1) return x.realize(), y.realize() jf = TinyJit(f) for _ in range(5): a = Tensor.randn(10, 10, device=d0).realize() b = Tensor.randn(10, 10, device=d0).realize() xc, yc = jf(a, b) np.testing.assert_allclose(a.numpy(), xc.numpy(), atol=1e-4, rtol=1e-5) np.testing.assert_allclose(b.numpy(), yc.numpy(), atol=1e-4, rtol=1e-5) @unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL"}, "no GPU/CUDA/METAL in CI, fine to run on AMD/NV") def test_jitted_view(self): d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1" def f(a): x1 = a.sum(axis=(1,)) x = (x1 + 5).bitcast(dtypes.int32) y = x.to(d1) return y.realize() jf = TinyJit(f) for _ in range(5): a = Tensor.randn(10, 1000, device=d0).realize() xc = jf(a) np.testing.assert_allclose((a.numpy().sum(axis=(1,)) + 5).view(np.int32), xc.numpy(), atol=1e-4, rtol=1e-5) @unittest.skip("Pending multioutput implementation #3607") class TestMultioutputJit(unittest.TestCase): def _test(self, f): for _ in range(5): a, b = Tensor.randn(10, 10), Tensor.randn(10, 10) out0, out1, out2 = f(a, b) np.testing.assert_allclose(out0.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5) np.testing.assert_allclose(out1.numpy(), a.numpy()-b.numpy(), atol=1e-4, rtol=1e-5) np.testing.assert_allclose(out2.numpy(), a.numpy()*b.numpy(), atol=1e-4, rtol=1e-5) def test_jit_multioutput_realize(self): @TinyJit def fxn(a, b): return (a+b).realize(), (a-b).realize(), (a*b).realize() self._test(fxn) assert_jit_cache_len(fxn, 3) def test_jit_multioutput_norealize(self): @TinyJit def fxn(a, b): return a+b, a-b, a*b self._test(fxn) assert_jit_cache_len(fxn, 1) def test_jit_multioutput_mix(self): @TinyJit def fxn(a, b): return a+b, a-b, (a*b).realize() self._test(fxn) assert_jit_cache_len(fxn, 2) class TestJitInsideJit(unittest.TestCase): def test_jit_jit_error(self): @TinyJit def f(t): return t + 1 @TinyJit def g(t): return f(t) * 3 # NOTE: first does not raise g(Tensor([1])).realize() with self.assertRaisesRegex(RuntimeError, "having TinyJit inside another TinyJit is not supported"): g(Tensor([1])).realize() if __name__ == '__main__': unittest.main()