from tinygrad.helpers import getenv from tinygrad import dtypes, Tensor dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None CNT = getenv("CNT", 8) BS = getenv("BS", 16) CIN = getenv("CIN", 128) COUT = getenv("COUT", 128) HW = getenv("HW", 128) K = getenv("K", 3) PADDING = getenv("PADDING", 1) COMP = getenv("COMP", 0) ATOL = getenv("ATOL", 1e-4) RTOL = getenv("RTOL", 3e-2) FLOPS = BS*K*K*CIN*HW*HW*COUT*2 def rand_input(): return Tensor.rand(BS, CIN, HW, HW, dtype=dtype_in).realize(), Tensor.rand(COUT, CIN, K, K, dtype=dtype_in).realize() if __name__ == "__main__": a, b = rand_input() for i in range(CNT): if i > 0 and getenv("RAND", 0) != 0: a, b = rand_input() c = a.conv2d(b, padding=PADDING, acc_dtype=acc_dtype).realize() if COMP: import numpy as np, time, torch torch_device = "cuda:0" if torch.cuda.is_available() else ("mps" if getenv("MPS", 0) else "cpu") ta, tb = torch.from_numpy(a.numpy()).to(torch_device), torch.from_numpy(b.numpy()).to(torch_device) tc = torch.nn.functional.conv2d(ta, tb, padding=PADDING) np.testing.assert_allclose(c.numpy(), tc.cpu(), atol=ATOL, rtol=RTOL)