import numpy as np from tinygrad.helpers import getenv from tinygrad import dtypes, Tensor, Device dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None GPUS = getenv("GPUS", 0) M = getenv("M", 16384) N = getenv("N", 4096) CNT = getenv("CNT", 10) ATOL = getenv("ATOL", 1e-4) RTOL = getenv("RTOL", 3e-2) def _rand(device): a, b = Tensor.rand(M, N, dtype=dtype_in).realize(), Tensor.rand(N, dtype=dtype_in).realize() if isinstance(device, tuple): a.shard_(device, axis=1) b.shard_(device, axis=0) return a, b if __name__ == "__main__": device = tuple(f"{Device.DEFAULT}:{i}" for i in range(GPUS)) if GPUS > 1 else Device.DEFAULT a, b = _rand(device) for i in range(CNT): if i > 0 and getenv("RAND", 0) != 0: a, b = _rand(device) c = a.matmul(b, acc_dtype=acc_dtype).realize() nc = c.numpy() comp = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32) np.testing.assert_allclose(nc, comp, atol=ATOL, rtol=RTOL)