from pathlib import Path import numpy as np import torch from torchvision.utils import make_grid, save_image from tinygrad.nn.state import get_parameters from tinygrad.tensor import Tensor from tinygrad.helpers import trange from tinygrad.nn import optim from extra.datasets import fetch_mnist class LinearGen: def __init__(self): self.l1 = Tensor.scaled_uniform(128, 256) self.l2 = Tensor.scaled_uniform(256, 512) self.l3 = Tensor.scaled_uniform(512, 1024) self.l4 = Tensor.scaled_uniform(1024, 784) def forward(self, x): x = x.dot(self.l1).leakyrelu(0.2) x = x.dot(self.l2).leakyrelu(0.2) x = x.dot(self.l3).leakyrelu(0.2) x = x.dot(self.l4).tanh() return x class LinearDisc: def __init__(self): self.l1 = Tensor.scaled_uniform(784, 1024) self.l2 = Tensor.scaled_uniform(1024, 512) self.l3 = Tensor.scaled_uniform(512, 256) self.l4 = Tensor.scaled_uniform(256, 2) def forward(self, x): # balance the discriminator inputs with const bias (.add(1)) x = x.dot(self.l1).add(1).leakyrelu(0.2).dropout(0.3) x = x.dot(self.l2).leakyrelu(0.2).dropout(0.3) x = x.dot(self.l3).leakyrelu(0.2).dropout(0.3) x = x.dot(self.l4).log_softmax() return x def make_batch(images): sample = np.random.randint(0, len(images), size=(batch_size)) image_b = images[sample].reshape(-1, 28*28).astype(np.float32) / 127.5 - 1.0 return Tensor(image_b) def make_labels(bs, col, val=-2.0): y = np.zeros((bs, 2), np.float32) y[range(bs), [col] * bs] = val # Can we do label smoothing? i.e -2.0 changed to -1.98789. return Tensor(y) def train_discriminator(optimizer, data_real, data_fake): real_labels = make_labels(batch_size, 1) fake_labels = make_labels(batch_size, 0) optimizer.zero_grad() output_real = discriminator.forward(data_real) output_fake = discriminator.forward(data_fake) loss_real = (output_real * real_labels).mean() loss_fake = (output_fake * fake_labels).mean() loss_real.backward() loss_fake.backward() optimizer.step() return (loss_real + loss_fake).numpy() def train_generator(optimizer, data_fake): real_labels = make_labels(batch_size, 1) optimizer.zero_grad() output = discriminator.forward(data_fake) loss = (output * real_labels).mean() loss.backward() optimizer.step() return loss.numpy() if __name__ == "__main__": # data for training and validation images_real = np.vstack(fetch_mnist()[::2]) ds_noise = Tensor.randn(64, 128, requires_grad=False) # parameters epochs, batch_size, k = 300, 512, 1 sample_interval = epochs // 10 n_steps = len(images_real) // batch_size # models and optimizer generator = LinearGen() discriminator = LinearDisc() # path to store results output_dir = Path(".").resolve() / "outputs" output_dir.mkdir(exist_ok=True) # optimizers optim_g = optim.Adam(get_parameters(generator),lr=0.0002, b1=0.5) # 0.0002 for equilibrium! optim_d = optim.Adam(get_parameters(discriminator),lr=0.0002, b1=0.5) # training loop Tensor.training = True for epoch in (t := trange(epochs)): loss_g, loss_d = 0.0, 0.0 for _ in range(n_steps): data_real = make_batch(images_real) for step in range(k): # Try with k = 5 or 7. noise = Tensor.randn(batch_size, 128) data_fake = generator.forward(noise).detach() loss_d += train_discriminator(optim_d, data_real, data_fake) noise = Tensor.randn(batch_size, 128) data_fake = generator.forward(noise) loss_g += train_generator(optim_g, data_fake) if (epoch + 1) % sample_interval == 0: fake_images = generator.forward(ds_noise).detach().numpy() fake_images = (fake_images.reshape(-1, 1, 28, 28) + 1) / 2 # 0 - 1 range. save_image(make_grid(torch.tensor(fake_images)), output_dir / f"image_{epoch+1}.jpg") t.set_description(f"Generator loss: {loss_g/n_steps}, Discriminator loss: {loss_d/n_steps}") print("Training Completed!")