# An example to compile a small Tensorflow model to extremely portable C code import os, sys os.environ["CLANG"] = '1' os.environ["JIT"] = '2' import numpy as np import subprocess import tensorflow as tf import tf2onnx from extra.onnx import get_run_onnx from tinygrad.tensor import Tensor from extra.export_model import export_model_clang, compile_net, jit_model def get_uncompiled_model2(dataset_size=32, output_size=4): inputs = tf.keras.Input(shape=(dataset_size,), name="inputs") x = tf.keras.layers.Dense(16, activation="relu", name="dense_1")(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Dense(32, activation="relu", name="dense_2")(x) outputs = tf.keras.layers.Dense(output_size, activation="sigmoid", name="predictions")(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) return model class TinyOnnx: def __init__(self, keras_model): input_signature = [tf.TensorSpec([1,32], tf.float32, name='x')] onnx_model, _ = tf2onnx.convert.from_keras(keras_model, input_signature, opset=13) self.run_onnx = get_run_onnx(onnx_model) def forward(self, x): return self.run_onnx({"x": x}, debug=False)['predictions'] def compile_onnx_model(onnx_model): tinyonnx = TinyOnnx(onnx_model) the_input = Tensor.randn(1,32) run, special_names = jit_model(tinyonnx, the_input) functions, statements, bufs, bufs_to_save = compile_net(run, special_names) prg = export_model_clang(functions, statements, bufs, {}, ["input0"], ["output0"]) the_output = run(the_input) cprog = ["#include ", "#include ", "#include "] cprog.append(prg) # weights cprog.append("void initialize(float *weights) {") weights = bytes() for name,cl in bufs_to_save.items(): cprog.append(f"memcpy({name}, weights + {len(weights)//4}, {len(cl._buf)*4});") weights += bytes(cl._buf) cprog.append("}") # write the weights to disk with open("/tmp/tf_weights", "wb") as f: f.write(weights) # test program cprog.append(f"""int main(int argc, char *argv[]) {{ // read in the weights from disk FILE *f = fopen("/tmp/tf_weights", "rb"); float *weights = (float *)malloc({len(weights)}); fread(weights, 1, {len(weights)}, f); fclose(f); // init the net initialize(weights); // test run float input[32]; float outputs[4]; for (int i = 0; i < 32; i++) scanf("%f", &input[i]); net(input, outputs); printf("%f %f %f %f\\n", outputs[0], outputs[1], outputs[2], outputs[3]); }}""") # ready the program prg = '\n'.join(cprog) print(prg) # add test weights subprocess.check_output(['clang', '-O2', '-lm', '-fPIC', '-x', 'c', '-', '-o', "/tmp/tf_test"], input=prg.encode('utf-8')) tinygrad_output = the_output[0].numpy()[0].tolist() print("tinygrad:", tinygrad_output, file=sys.stderr) c_input = ' '.join(["%f" % x for x in the_input[0].numpy()])+"\n" c_output = [float(x) for x in subprocess.check_output(["/tmp/tf_test"], input=c_input.encode('utf-8')).decode('utf-8').strip().split(" ")] print("compiled:", c_output, file=sys.stderr) np.testing.assert_allclose(tinygrad_output, c_output, atol=1e-5, rtol=1e-5) return the_input.numpy(), c_output if __name__ == "__main__": keras_model = get_uncompiled_model2() test_input, test_output = compile_onnx_model(keras_model) tf_output = keras_model(test_input).numpy()[0] print("keras: ", tf_output, file=sys.stderr) np.testing.assert_allclose(tf_output, test_output, atol=1e-5, rtol=1e-5)