import numpy as np from tqdm import trange from tinygrad.tensor import Tensor from tinygrad.helpers import CI from tinygrad.engine.jit import TinyJit def train(model, X_train, Y_train, optim, steps, BS=128, lossfn=lambda out,y: out.sparse_categorical_crossentropy(y), transform=lambda x: x, target_transform=lambda x: x, noloss=False, allow_jit=True): def train_step(x, y): # network out = model.forward(x) if hasattr(model, 'forward') else model(x) loss = lossfn(out, y) optim.zero_grad() loss.backward() if noloss: del loss optim.step() if noloss: return (None, None) cat = out.argmax(axis=-1) accuracy = (cat == y).mean() return loss.realize(), accuracy.realize() if allow_jit: train_step = TinyJit(train_step) with Tensor.train(): losses, accuracies = [], [] for i in (t := trange(steps, disable=CI)): samp = np.random.randint(0, X_train.shape[0], size=(BS)) x = Tensor(transform(X_train[samp]), requires_grad=False) y = Tensor(target_transform(Y_train[samp])) loss, accuracy = train_step(x, y) # printing if not noloss: loss, accuracy = loss.numpy(), accuracy.numpy() losses.append(loss) accuracies.append(accuracy) t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy)) return [losses, accuracies] def evaluate(model, X_test, Y_test, num_classes=None, BS=128, return_predict=False, transform=lambda x: x, target_transform=lambda y: y): Tensor.training = False def numpy_eval(Y_test, num_classes): Y_test_preds_out = np.zeros(list(Y_test.shape)+[num_classes]) for i in trange((len(Y_test)-1)//BS+1, disable=CI): x = Tensor(transform(X_test[i*BS:(i+1)*BS])) out = model.forward(x) if hasattr(model, 'forward') else model(x) Y_test_preds_out[i*BS:(i+1)*BS] = out.numpy() Y_test_preds = np.argmax(Y_test_preds_out, axis=-1) Y_test = target_transform(Y_test) return (Y_test == Y_test_preds).mean(), Y_test_preds if num_classes is None: num_classes = Y_test.max().astype(int)+1 acc, Y_test_pred = numpy_eval(Y_test, num_classes) print("test set accuracy is %f" % acc) return (acc, Y_test_pred) if return_predict else acc