from pathlib import Path from extra.models.efficientnet import EfficientNet from tinygrad.tensor import Tensor from tinygrad.nn.state import safe_save from extra.export_model import export_model from tinygrad.helpers import getenv, fetch import ast if __name__ == "__main__": model = EfficientNet(0) model.load_from_pretrained() mode = "clang" if getenv("CLANG", "") != "" else "webgpu" if getenv("WEBGPU", "") != "" else "webgl" if getenv("WEBGL", "") != "" else "" prg, inp_sizes, out_sizes, state = export_model(model, mode, Tensor.randn(1,3,224,224)) dirname = Path(__file__).parent if getenv("CLANG", "") == "": safe_save(state, (dirname / "net.safetensors").as_posix()) ext = "js" if getenv("WEBGPU", "") != "" or getenv("WEBGL", "") != "" else "json" with open(dirname / f"net.{ext}", "w") as text_file: text_file.write(prg) else: cprog = [prg] # image library! cprog += ["#define STB_IMAGE_IMPLEMENTATION", fetch("https://raw.githubusercontent.com/nothings/stb/master/stb_image.h").read_text().replace("half", "_half")] # imagenet labels, move to datasets? lbls = ast.literal_eval(fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt").read_text()) lbls = ['"'+lbls[i]+'"' for i in range(1000)] inputs = "\n".join([f"float {inp}[{inp_size}];" for inp,inp_size in inp_sizes.items()]) outputs = "\n".join([f"float {out}[{out_size}];" for out,out_size in out_sizes.items()]) cprog.append(f"char *lbls[] = {{{','.join(lbls)}}};") cprog.append(inputs) cprog.append(outputs) # buffers (empty + weights) cprog.append(""" int main(int argc, char* argv[]) { int DEBUG = getenv("DEBUG") != NULL ? atoi(getenv("DEBUG")) : 0; int X=0, Y=0, chan=0; stbi_uc *image = (argc > 1) ? stbi_load(argv[1], &X, &Y, &chan, 3) : stbi_load_from_file(stdin, &X, &Y, &chan, 3); assert(image != NULL); if (DEBUG) printf("loaded image %dx%d channels %d\\n", X, Y, chan); assert(chan == 3); // resize to input[1,3,224,224] and rescale for (int y = 0; y < 224; y++) { for (int x = 0; x < 224; x++) { // get sample position int tx = (x/224.)*X; int ty = (y/224.)*Y; for (int c = 0; c < 3; c++) { input0[c*224*224 + y*224 + x] = (image[ty*X*chan + tx*chan + c] / 255.0 - 0.45) / 0.225; } } } net(input0, output0); float best = -INFINITY; int best_idx = -1; for (int i = 0; i < 1000; i++) { if (output0[i] > best) { best = output0[i]; best_idx = i; } } if (DEBUG) printf("category : %d (%s) with %f\\n", best_idx, lbls[best_idx], best); else printf("%s\\n", lbls[best_idx]); }""") # CLANG=1 python3 examples/compile_efficientnet.py | clang -O2 -lm -x c - -o recognize && DEBUG=1 time ./recognize docs/showcase/stable_diffusion_by_tinygrad.jpg # category : 281 (tabby, tabby cat) with 9.452788 print('\n'.join(cprog))