# model based off https://towardsdatascience.com/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392 from typing import List, Callable from tinygrad import Tensor, TinyJit, nn, GlobalCounters from tinygrad.helpers import getenv, colored, trange from tinygrad.nn.datasets import mnist class Model: def __init__(self): self.layers: List[Callable[[Tensor], Tensor]] = [ nn.Conv2d(1, 32, 5), Tensor.relu, nn.Conv2d(32, 32, 5), Tensor.relu, nn.BatchNorm(32), Tensor.max_pool2d, nn.Conv2d(32, 64, 3), Tensor.relu, nn.Conv2d(64, 64, 3), Tensor.relu, nn.BatchNorm(64), Tensor.max_pool2d, lambda x: x.flatten(1), nn.Linear(576, 10)] def __call__(self, x:Tensor) -> Tensor: return x.sequential(self.layers) if __name__ == "__main__": X_train, Y_train, X_test, Y_test = mnist(fashion=getenv("FASHION")) model = Model() opt = nn.optim.Adam(nn.state.get_parameters(model)) @TinyJit @Tensor.train() def train_step() -> Tensor: opt.zero_grad() samples = Tensor.randint(getenv("BS", 512), high=X_train.shape[0]) # TODO: this "gather" of samples is very slow. will be under 5s when this is fixed loss = model(X_train[samples]).sparse_categorical_crossentropy(Y_train[samples]).backward() opt.step() return loss @TinyJit @Tensor.test() def get_test_acc() -> Tensor: return (model(X_test).argmax(axis=1) == Y_test).mean()*100 test_acc = float('nan') for i in (t:=trange(getenv("STEPS", 70))): GlobalCounters.reset() # NOTE: this makes it nice for DEBUG=2 timing loss = train_step() if i%10 == 9: test_acc = get_test_acc().item() t.set_description(f"loss: {loss.item():6.2f} test_accuracy: {test_acc:5.2f}%") # verify eval acc if target := getenv("TARGET_EVAL_ACC_PCT", 0.0): if test_acc >= target and test_acc != 100.0: print(colored(f"{test_acc=} >= {target}", "green")) else: raise ValueError(colored(f"{test_acc=} < {target}", "red"))