import functools, io, math from typing import Union, Tuple, Optional, List, Any from tinygrad.tensor import Tensor, _broadcast_shape from tinygrad.dtype import ImageDType, dtypes from tinygrad.helpers import prod, flatten from extra.onnx import DTYPE_MAP, to_python_const import numpy as np tensor_methods = {"Neg", "Reciprocal", "Pow", "Sqrt", "Sign", "Abs", "Exp", "Log", "Mish", "Sin", "Cos", "Tan", "Relu", "Sigmoid", "MatMul", "Floor", "Ceil", "Softplus", "HardSwish", "Where", "Mul", "Sinh", "Cosh", "Tanh", "Softsign", "Asinh", "Acosh", "Atanh", "Elu", "Celu", "Xor", "Round"} # **************** Free Ops **************** def Identity(x: Tensor): return x # TODO: fix buffer_parse def Add(x: Tensor, other: Tensor, broadcast=None, axis=None): return x + other if x.dtype == dtypes.float or isinstance(x.dtype, ImageDType) else (x + other).cast(x.dtype) def Sub(x: Union[Tensor, Any], other: Tensor): return x - other # some test has input as int def Less(x:Tensor,y:Tensor): return x < y def LessOrEqual(x:Tensor,y:Tensor): return x <= y def Greater(x:Tensor,y:Tensor): return x > y def GreaterOrEqual(x:Tensor,y:Tensor): return x >= y def Equal(x:Tensor,y:Tensor): return x == y def Max(*data_0): return functools.reduce(Tensor.maximum, data_0) def Min(*data_0): return functools.reduce(Tensor.minimum, data_0) def Sum(*data_0): return functools.reduce(Tensor.add, data_0) def Mean(*data_0): return Sum(*data_0) / len(data_0) # NOTE: does not support saturate def Cast(x: Tensor, to: int, saturate=1): return x.cast(DTYPE_MAP[to]) def CastLike(x: Tensor, target_type: Tensor, saturate=1): return x.cast(target_type.dtype) # **************** Simple Ops **************** # https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_div.py def Div(x: Tensor, other: Tensor): return (x/other).cast(x.dtype) def Constant(value:Optional[Tensor]=None, value_float=None, value_floats=None, value_int=None, value_ints=None, value_string=None, value_strings=None): if value is not None: return value if value_float is not None: return Tensor(value_float, dtype=dtypes.float32, requires_grad=False) if value_floats is not None: return Tensor(list(value_floats), dtype=dtypes.float32, requires_grad=False) if value_int is not None: return Tensor(value_int, dtype=dtypes.int64, requires_grad=False) if value_ints is not None: return Tensor(list(value_ints), dtype=dtypes.int64, requires_grad=False) if value_string is not None or value_strings is not None: raise NotImplementedError('value_string or value_strings not implemented for Constant op') def HardSigmoid(x: Tensor, alpha=0.2, beta=0.5): return (alpha*x + beta).clip(0, 1) def Gelu(x:Tensor, approximate=None): return x.gelu() if approximate == "tanh" else 0.5 * x * (1 + Erf(x/math.sqrt(2))) def Selu(X: Tensor, alpha=1.67326319217681884765625, gamma=1.05070102214813232421875): return gamma * (X.relu() - (-alpha*X.exp()+alpha).relu()) def PRelu(X:Tensor, slope:Tensor): slope = slope[0] if slope.shape[-1] != X.shape[-1] else slope # HACK OnnxBackendPyTorchConvertedModelTest HAS WEIRD SLOPE WHERE IT'S [0.25, 0.25, 0.25] FOR ANY X.SHAPE return (X > 0).where(X, X * slope) def LeakyRelu(X: Tensor, alpha=0.01): return X.leakyrelu(alpha) def ThresholdedRelu(X: Tensor, alpha=1.0): return (X > alpha).where(X, 0) def Softmax_1(x: Tensor, axis=1): return x.softmax(axis) def Softmax_13(x: Tensor, axis=-1): return x.softmax(axis) Softmax = {1: Softmax_1, 13: Softmax_13} # Softmax default axis changed def LogSoftmax(x: Tensor, axis=-1): return x.log_softmax(axis) def Clip(x: Tensor, min=None, max=None): return x.clip(float('-inf') if min is None else min, float('inf') if max is None else max).cast(x.dtype) def _axes(axes, noop_with_empty_axes): if axes is not None and not (isinstance(axes, Tensor) and axes.shape == (0,)): return to_python_const(axes) return [] if noop_with_empty_axes else None def ReduceMax(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return data.max(_axes(axes, noop_with_empty_axes), keepdim=keepdims) def ReduceMin(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return data.min(_axes(axes, noop_with_empty_axes), keepdim=keepdims) def ReduceSum(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return data.sum(_axes(axes, noop_with_empty_axes), keepdim=keepdims) def ReduceMean(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return data.mean(_axes(axes, noop_with_empty_axes), keepdim=keepdims) def ReduceSumSquare(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return ReduceSum(data.square(), axes, keepdims, noop_with_empty_axes) def ReduceProd(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return data.prod(_axes(axes, noop_with_empty_axes), keepdim=keepdims) def ReduceL1(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return ReduceSum(data.abs(), axes, keepdims, noop_with_empty_axes) def ReduceL2(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return ReduceSumSquare(data, axes, keepdims, noop_with_empty_axes).sqrt() def ReduceLogSum(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return ReduceSum(data, axes, keepdims, noop_with_empty_axes).log() def ReduceLogSumExp(data: Tensor, axes=None, keepdims=1, noop_with_empty_axes=0): return ReduceSum(data.exp(), axes, keepdims, noop_with_empty_axes).log() def GlobalAveragePool(X: Tensor): return X.mean(axis=tuple(range(2, X.ndim)), keepdim=True) def GlobalMaxPool(X: Tensor): return X.max(axis=tuple(range(2, X.ndim)), keepdim=True) def OptionalHasElement(x: Optional[Tensor]=None): return Tensor(x is not None and x.numel() > 0) def OptionalGetElement(x: Optional[Tensor]=None): return x if x is not None else Tensor([]) def Tile(x: Tensor, repeats): return x.repeat(to_python_const(repeats)) def Range(start: Tensor, limit, delta): return Tensor.arange(start=to_python_const(start), stop=to_python_const(limit), step=to_python_const(delta)) def Shape(data: Tensor, end=None, start=0): return Tensor(data.shape[start:end], dtype=dtypes.int64) def Size(data: Tensor): return prod(data if isinstance(data, list) else data.shape) def Flatten(x: Tensor, axis=1): return x.reshape(prod(x.shape[0:axis]), -1) def Reshape(data: Tensor, shape: Tensor, allowzero=0): return data.reshape([int(x) if x != 0 else (0 if allowzero else data.shape[i]) for i,x in enumerate(to_python_const(shape))]) def Expand(x: Tensor, shape:Tensor): return x.expand(_broadcast_shape(x.shape, tuple(to_python_const(shape)))) def Shrink(x: Tensor, bias=0.0, lambd=0.5): return (x < -lambd)*(x+bias) + (x > lambd)*(x-bias) def And(x:Tensor, y:Tensor): return (x==y).where(x, False) def Or(x:Tensor, y:Tensor): return (x==y).where(x, True) def Not(x:Tensor): return x.logical_not() def Asin(x): return Atan(x / (1 - x * x).sqrt()) def Acos(x: Tensor): negate = (x < 0) x = x.abs() ret = ((((-0.0187293 * x) + 0.0742610)*x - 0.2121144) * x + 1.5707288) * (1.0 - x).sqrt() ret = ret - 2 * negate * ret return negate * math.pi + ret def Atan(y: Tensor): t1 = y.abs() t3 = (1 > t1).where(t1, t1.reciprocal()) t4 = t3 * t3 t0 = ((((-0.013480470 * t4 + 0.057477314) * t4 - 0.121239071) * t4 + 0.195635925) * t4 - 0.332994597) * t4 + 0.999995630 t3 = t0 * t3 t3 = (t1 > 1).where(1.570796327 - t3, t3) return y.sign() * t3 def Trilu(x: Tensor, k: Union[Tensor, int]=0, upper=1): k = to_python_const(k) if isinstance(k, Tensor) else 0 # onnx passes k as a tensor int64 with one element, default is 0 return x.triu(k) if upper else x.tril(k) def Squeeze(data: Tensor, axes): if isinstance(axes, Tensor): axes = to_python_const(axes) axes = [data._resolve_dim(x) for x in axes] return data.reshape([s for i,s in enumerate(data.shape) if i not in axes]) def Unsqueeze(data: Tensor, axes): axes = sorted([x + data.ndim if x < 0 else x for x in to_python_const(axes)]) new_shape = list(data.shape) for axis in axes: new_shape.insert(axis, 1) return data.reshape(new_shape) def Binarizer(x, threshold=0.0): return (x > threshold).float() def ArgMax(x: Tensor, axis=0, keepdims=1, select_last_index=0): if select_last_index: return ((x.shape[axis]-1) - x.flip(axis).argmax(axis, keepdim=keepdims)).cast(dtypes.int64) return x.argmax(axis, keepdim=keepdims).cast(dtypes.int64) def ArgMin(x, axis=0, keepdims=1, select_last_index=0): return ArgMax(-x, axis=axis, keepdims=keepdims, select_last_index=select_last_index) def Concat(*xs: List[Tensor], axis): return Tensor.cat(*xs, dim=axis) def Transpose(x: Tensor, perm=None): return x.permute(order=list(range(x.ndim)[::-1]) if perm is None else perm) def ConstantOfShape(x, value:Tensor=None): if value is None: value = 0.0 shape = to_python_const(x) return Tensor.ones(*shape, dtype=value.dtype) * (value if shape[0]!=0 else 1) # **************** Complex Ops **************** def Gemm(A: Tensor, B: Tensor, C: Tensor=None, alpha=1.0, beta=1.0, transA=0, transB=0, broadcast=0): ret = alpha * (A.transpose(transA) @ B.transpose(transB)) if C is not None: ret = ret + beta * (C if broadcast == 0 else C.reshape([-1 if i < len(C.shape) else 1 for i in range(ret.ndim)][::-1])) return ret def Einsum(*Inputs: List[Tensor], equation): return Tensor.einsum(equation, Inputs) def CumSum(X:Tensor, axis:Tensor, exclusive=0, reverse=0): axis = to_python_const(axis) if axis < 0: axis += X.ndim if reverse: X = X.flip(axis) if exclusive: pad_arg, shrink_arg = [None] * X.ndim, [None] * X.ndim pad_arg[axis] = (1, 0) shrink_arg[axis] = (0, X.shape[axis]) X = X.pad(tuple(pad_arg)).shrink(tuple(shrink_arg)) if reverse: return X.cumsum(axis).flip(axis) return X.cumsum(axis) # TODO: this is copied from tinygrad/nn/__init__.py # spatial is from opset 7 and has since been removed def BatchNormalization(X: Tensor, scale, B, input_mean, input_var, epsilon=1e-05, momentum=0.9, training_mode=0, spatial=1, is_test=0): if training_mode: x_detached = X.detach() current_mean = x_detached.mean(axis=(0,2,3)) y = (x_detached - current_mean.reshape(shape=[1, -1, 1, 1])) current_var = (y*y).mean(axis=(0,2,3)) current_invstd = current_var.add(epsilon).rsqrt() running_mean = input_mean * momentum + current_mean * (1 - momentum) running_var = input_var * momentum + current_var * (1 - momentum) return X.batchnorm(scale, B, current_mean, current_invstd), running_mean, running_var invstd = (input_var + epsilon).rsqrt() return X.batchnorm(scale, B, input_mean, invstd) def InstanceNormalization(x: Tensor, scale: Tensor, bias: Tensor, epsilon=1e-05): axis = tuple(range(2, x.ndim)) mean = x.mean(axis=axis, keepdim=True) invstd = x.sub(mean).square().mean(axis=axis, keepdim=True).add(epsilon).rsqrt() return x.sub(mean).mul(scale.reshape(shape=[-1, 1, 1])).mul(invstd).add(bias.reshape(shape=[-1, 1, 1])) def LayerNormalization(x: Tensor, scale, bias, axis=-1, epsilon=1e-05, stash_type=1): assert stash_type == 1, "only float32 is supported" axis = tuple(i for i in range(axis if axis >= 0 else x.ndim + axis, x.ndim)) mean = x.mean(axis=axis, keepdim=True) return x.layernorm(axis, epsilon).mul(scale).add(bias), mean, (x.sub(mean)).square().mean(axis=axis, keepdim=True).add(epsilon).rsqrt() def GroupNormalization(x: Tensor, scale: Tensor, bias: Tensor, num_groups, epsilon=1e-05): return x.reshape(x.shape[0], num_groups, -1).layernorm(axis=-1, eps=epsilon).mul(scale.unsqueeze(-1)).add(bias.unsqueeze(-1)).reshape(x.shape) # onnx: [x1_begin, x2_begin, ..., x1_end, x2_end, ...] # numpy.pad: ((x1_begin, x1_end), (x2_begin, x2_end), ...) def _format_padding(onnx_pads, ndims=None, axes=None): if ndims and len(onnx_pads)//2 != ndims: onnx_pads = onnx_pads * ndims # for OnnxBackendPyTorchConvertedModelTest the len(onnx_pads) == 2 if ndims is None: ndims = len(onnx_pads) // 2 if axes is None: axes = list(range(ndims)) num_axes = len(axes) np_pads = [(0,0)] * ndims for i in range(num_axes): np_pads[axes[i]] = (onnx_pads[i], onnx_pads[i + num_axes]) return np_pads def _padded(X: Tensor, pads=None, auto_pad="NOTSET", axes=None, constant_value=0., strides=None, kernel_shape=None, dilations=None, ceil_mode=0): if auto_pad != "NOTSET": pads = _auto_pad(X, auto_pad, strides, kernel_shape, dilations) elif ceil_mode: if strides is not None: strides = [strides]*len(kernel_shape) if isinstance(strides, int) else strides if strides else [1]*len(kernel_shape) if dilations is not None: dilations = [1]*len(kernel_shape) if dilations == 1 else dilations out_spatial_shape = [math.ceil((sh - dil * (ker-1)-1)/st + 1) if ceil_mode else math.floor((sh - dil * (ker-1)-1)/st + 1) for sh, st, ker, dil in zip(X.shape[-len(kernel_shape):], strides, kernel_shape, dilations)] pad_shape = [(osh-1)*st+((ks-1)*dil+1)-ish for osh, st, ks, dil, ish in zip(out_spatial_shape, strides, kernel_shape, dilations, X.shape[-len(kernel_shape):])] pad_shape = [[sh//2, sh-sh//2] for sh in pad_shape] # ceil_mode case follows NOTE in https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d # so if any kernels start in right padded region, we decrease right pads to omit that kernel. Only omitting 1 kernel now. pad_shape = [[start,end-rpad] if (rpad := ks + st%(st-(((start+xs)%st)))) <= end else [start,end] for (start,end), ks, st, xs in zip(pad_shape, kernel_shape, strides, X.shape[-len(kernel_shape):])] pad_shape = flatten(pad_shape) pads = pad_shape[::2] + pad_shape[1::2] if pads is None: return X pads = _format_padding(pads, ndims=len(X.shape), axes=axes) return X.pad(tuple(pads), value=constant_value) def _auto_pad(X: Tensor, auto_pad, strides, kernel_shape, dilations): strides = [strides]*len(kernel_shape) if isinstance(strides, int) else strides if strides else [1]*len(kernel_shape) dilations = [1]*len(kernel_shape) if dilations == 1 else dilations if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER": pad_shape = [(math.ceil(sh/st)-1)*st+((ks-1)*di+1)-sh for sh, st, ks, di in zip(X.shape[-len(kernel_shape):], strides, kernel_shape, dilations)] pad_shape = flatten([[sh//2, sh-sh//2] for sh in pad_shape]) return pad_shape[::2] + pad_shape[1::2] if auto_pad == "SAME_UPPER" else pad_shape[1::2] + pad_shape[::2] raise NotImplementedError(f"auto_pad={auto_pad} not implemented") def Pad(x: Tensor, pads: Union[Tensor, Tuple[int, ...]], constant_value: Tensor=None, axes: Tensor=None, mode="constant", value: float=0.): constant_value = value if constant_value is None else float(to_python_const(constant_value)) seq_pads = list(pads) if isinstance(pads, tuple) else to_python_const(pads) seq_pads = [math.ceil(i) for i in seq_pads] seq_axes = to_python_const(axes) if axes is not None else None base_shape = x.shape pads = _format_padding(seq_pads, ndims=len(x.shape), axes=seq_axes) if mode == "wrap": repeat_args = [math.ceil(dim[0]/sh) + math.ceil(dim[1]/sh) + 1 for dim, sh in zip(pads, base_shape)] new_shape = [s*r for s,r in zip(base_shape, repeat_args)] shrink_args = [(sh-dim[0]%sh if dim[0]%sh != 0 else 0, nsh-(sh-dim[1]%sh if dim[1]%sh != 0 else 0)) for dim, sh, nsh in zip(pads, base_shape, new_shape)] return x.repeat(tuple(repeat_args)).shrink(tuple(shrink_args)) if mode == "reflect": for i,s in enumerate(x.shape): if pads[i] != (0,0): xL = x.flip(i).shrink(tuple((s-pads[i][0]-1, s_-1) if i_ == i else None for i_,s_ in enumerate(x.shape))) xR = x.flip(i).shrink(tuple((1, pads[i][1]+1) if i_ == i else None for i_ in range(x.ndim))) x = xL.cat(x, xR, dim=i) return x if mode == "edge": for i,s in enumerate(x.shape): if pads[i] != (0,0): xL = x.shrink(tuple((0,1) if i_ == i else None for i_ in range(x.ndim))).expand([pads[i][0] if i_ == i else None for i_ in range(x.ndim)]) xR = x.shrink(tuple((s_-1, s_) if i_ == i else None for i_,s_ in enumerate(x.shape))).expand([pads[i][1] if i_ == i else None for i_ in range(x.ndim)]) x = xL.cat(x, xR, dim=i) return x if mode == "constant": return _padded(x, seq_pads, axes=seq_axes, constant_value=constant_value) def AveragePool(X: Tensor, kernel_shape, auto_pad="NOTSET", ceil_mode=0, count_include_pad=0, dilations=1, pads=None, strides=1): pixel_axes = tuple(range(2, X.ndim)) ret = _padded(X, pads, auto_pad, axes=pixel_axes, strides=strides, kernel_shape=kernel_shape, dilations=dilations, ceil_mode=ceil_mode) ret = ret.avg_pool2d(kernel_shape, stride=strides, dilation=dilations) if count_include_pad: return ret div = _padded(Tensor.ones(X.shape), pads, auto_pad, axes=pixel_axes, strides=strides, kernel_shape=kernel_shape, dilations=dilations, ceil_mode=ceil_mode).avg_pool2d(kernel_shape, stride=strides, dilation=dilations) return ret / div def MaxPool(X: Tensor, kernel_shape, auto_pad="NOTSET", ceil_mode=0, dilations=1, pads=None, storage_order=0, strides=1): pixel_axes = tuple(range(2, X.ndim)) ret = _padded(X, pads, auto_pad, constant_value=-math.inf, axes=pixel_axes, strides=strides, kernel_shape=kernel_shape, dilations=dilations, ceil_mode=ceil_mode) ret = ret.max_pool2d(kernel_shape, stride=strides, dilation=dilations).cast(X.dtype) ret_len, X_len = ret.numel(), X.numel() indices = ((ret.flatten().unsqueeze(1).expand(ret_len, X_len) == X.flatten().unsqueeze(0).expand(ret_len, X_len)) * \ Tensor.arange(X_len, dtype=dtypes.int64).unsqueeze(0).expand(ret_len, X_len)).sum(1).reshape(ret.shape) if storage_order: indices = indices.transpose(-2, -1) return ret, indices def MaxUnpool(xT: Tensor, xI: Tensor, outshape: Optional[Tensor]=None, kernel_shape=None, pads=None, strides=None): out_sh = [(ks//2)*2 + st * inps for inps, st, ks in zip(xI.shape, strides, kernel_shape)] outlength = prod(out_sh) xI = xI.flatten().unsqueeze(1).expand(None, outlength) arange = Tensor.arange(outlength, requires_grad=False).reshape(1, outlength).expand(xI.shape) xT = xT.flatten().unsqueeze(1).expand(None, outlength) ret = ((xI == arange) * xT).sum(0).reshape([1, 1] + out_sh) if outshape is not None and (outshape := to_python_const(outshape)) != ret.shape: diff = [outshape[2] - ret.shape[2], outshape[3] - ret.shape[3]] pad_args = [diff[0]//2, diff[1]//2, diff[0]-diff[0]//2, diff[1]-diff[1]//2] ret = ret.pad2d((pad_args[1], pad_args[3], pad_args[0], pad_args[2])) return ret def Conv(X: Tensor, W: Tensor, B:Optional[Tensor]=None, auto_pad="NOTSET", dilations=1, group=1, kernel_shape=None, pads=None, strides=1): if auto_pad != "NOTSET": padding = _auto_pad(X, auto_pad, strides, kernel_shape, dilations) else: # reorder padding padding = [p for ps in zip(pads[:len(pads)//2][::-1], pads[len(pads)//2:][::-1]) for p in ps] if pads is not None else 0 return X.conv2d(W, B, stride=strides, groups=group, dilation=dilations, padding=padding) def ConvTranspose(X: Tensor, W: Tensor, B:Optional[Tensor]=None, auto_pad="NOTSET", dilations=1, group=1, kernel_shape=None, pads=None, output_shape=None, output_padding=0, strides=1): if kernel_shape is None: kernel_shape = W.shape[2:] if isinstance(strides, int): strides = [strides]*(W.ndim-2) if isinstance(dilations, int): dilations = [dilations]*(W.ndim-2) if isinstance(output_padding, int): output_padding = [output_padding]*(W.ndim-2) out_sh = [st*(xs-1) + (ks-1)*di+1 if n < 2 else st*(xs-1) + (ks-1)*di+1 - pads[n-2] - pads[n-1] for n, (st, xs, ks, di) in enumerate(zip(strides, X.shape[2:], kernel_shape, dilations))] if output_shape is not None or auto_pad != "NOTSET" else [] if pads is None: if output_shape is None: output_shape = [xs*st for xs, st in zip(X.shape[2:], strides)] if auto_pad == "NOTSET": pads = [0,0] * (X.ndim - 2) else: total_padding = [st*(ish-1) + pad + ((ks-1)*dil+1)-osh for st, ish, pad, ks, dil, osh in zip(strides, X.shape[2:], output_padding, kernel_shape, dilations, output_shape)] pad_shape = flatten([[sh//2, sh-sh//2] for sh in total_padding]) pads = pad_shape[::2] + pad_shape[1::2] if auto_pad == "SAME_UPPER" else pad_shape[1::2] + pad_shape[::2] else: if output_shape is None: output_shape = [st*(xs-1) + (ks-1)*di+1 if n < 2 else st*(xs-1) + (ks-1)*di+1 - pads[n-2] - pads[n-1] for n, (st, xs, ks, di) in enumerate(zip(strides, X.shape[2:], kernel_shape, dilations))] if out_sh: output_padding = [os - rs for os, rs in zip(output_shape, out_sh)] return X.conv_transpose2d(W, B, stride=strides, groups=group, dilation=dilations, padding=pads if pads is not None else 0, output_padding=output_padding) def DepthToSpace(X:Tensor, blocksize:int, mode:str="DCR"): b, c, h, w = X.shape if mode == "DCR": return X.reshape(b, blocksize, blocksize, c // (blocksize**2), h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, c // (blocksize**2), h * blocksize, w * blocksize) elif mode == "CRD": return X.reshape(b, c // (blocksize ** 2), blocksize, blocksize, h, w).permute(0, 1, 4, 2, 5, 3).reshape(b, c // (blocksize ** 2), h * blocksize, w * blocksize) def SpaceToDepth(X:Tensor, blocksize:int): b, c, h, w = X.shape return X.reshape(b, c, h // blocksize, blocksize, w // blocksize, blocksize).permute(0, 3, 5, 1, 2, 4).reshape(b, c * (blocksize**2), h // blocksize, w // blocksize) # Reimplemented here because you need legacy RNG for passing ONNX tests. def Dropout(data: Tensor, ratio=0.5, training_mode=False, seed=None): if isinstance(ratio, Tensor) and not ratio.shape: ratio = to_python_const(ratio) # ratio and tensor is passed in as Tensor with shape: () if isinstance(training_mode, Tensor) and not training_mode.shape: training_mode = to_python_const(training_mode) if not training_mode: return data, Tensor.ones(data.shape, dtype=dtypes.bool) # if mask is requested as output it will contain all True's. rng = np.random.RandomState(seed) if isinstance(ratio, Tensor): ratio = ratio.item() mask = Tensor(rng.random(data.shape) >= ratio, requires_grad=False, device=data.device) return data * mask * (1/(1.0 - ratio)), mask def LRN(x: Tensor, size, alpha=1e-4, beta=0.75, bias=1.0): bs, c, iy, ix = x.shape return x / x.mul(x).reshape(bs,1,c,iy*ix).pad2d((0,0,(size-1)//2, size//2)).avg_pool2d((size, 1), 1).reshape(bs,c,iy,ix).mul(alpha).add(bias).pow(beta) def MeanVarianceNormalization(x: Tensor, axis=(0, 2, 3)): mean = x.mean(axis, keepdim=True) std = x.std(axis, keepdim=True, correction=0) return (x - mean) / (std + 1e-9) def NegativeLogLikelihoodLoss(x: Tensor, target: Tensor, weight=None, ignore_index=None, reduction="mean"): N, C, i_shape = x.shape[0], x.shape[1], x.shape t_shape = target.shape if len(x.shape) != 3: x = x.reshape((N, C, -1)) target = target.reshape((N, -1)) if weight is not None: mask = target.unsqueeze(-1) == Tensor.arange(C).repeat((N, 1, 1)) weight = (mask * weight).sum(axis=-1) if ignore_index is not None: cond = target == ignore_index weight = cond.where(0, weight) if weight is not None else cond.where(0, 1) mask = target[:, None, :] == Tensor.arange(C).reshape([1, C] + [1]*(x.ndim -2)) loss = -(mask * x).sum(axis=1) * (1 if weight is None else weight) if reduction == "mean": return loss.mean() if weight is None else loss.sum() / weight.sum() if reduction == "sum": return loss.sum() return loss.reshape(t_shape) if len(i_shape) != 3 else loss def SoftmaxCrossEntropyLoss(scores: Tensor, labels: Tensor, weights=None, ignore_index=None, reduction="mean"): _N, C, *s_dimensions = scores.shape if ignore_index is not None: labels = (labels == ignore_index).where(C+1, labels) mask = labels.unsqueeze(1) == Tensor.arange(C).reshape(1, C, *[1]*len(s_dimensions)) y = scores.log_softmax(axis=1) loss = (mask * -y).sum(1) if weights is not None: weights = weights[labels, ...] loss = loss * weights if reduction == "mean": loss = loss.sum() / ((loss != 0).sum() if weights is None else weights.sum()) elif reduction == "sum": loss = loss.sum() return loss, y def ArrayFeatureExtractor(x: Tensor, indices: Tensor): return x[..., indices] def Gather(x: Tensor, indices: Tensor, axis=0): if indices.numel() < 9: # NOTE lessor kernels for smaller indices but kernel number increases depending on size of indices x_sh = list(x.shape) ret_shape = x_sh[:axis] + list(indices.shape) + x_sh[axis+1:] if indices.ndim > 1: indices = indices.flatten() indices = [to_python_const(indices)] if indices.shape == () else [x_sh[axis]+x if x<0 else x for x in to_python_const(indices)] args = [[(0,x) if j != axis else (i,i+1) for j, x in enumerate(x_sh)] for i in indices] return x.shrink(arg=tuple(args[0])).cat(*[x.shrink(arg=tuple(arg)) for arg in args[1:]], dim=axis).reshape(ret_shape) # NOTE faster gather, fixed number of kernels, but exceeds limited kernels for openpilot return x[tuple([slice(None) if i != axis else indices for i in range(x.ndim)])] def GatherElements(x: Tensor, indices: Tensor, axis): indices = (indices < 0).where(x.shape[axis], 0) + indices return x.gather(axis, indices) # TODO clean this up, it's taking the longest in CI def Resize(X:Tensor, roi=None, scales=None, sizes=None, antialias=0, axes=None, coordinate_transformation_mode='half_pixel', cubic_coeff_a=-0.75, exclude_outside=0, extrapolation_value=0.0, keep_aspect_ratio_policy='stretch', mode='nearest', nearest_mode='round_prefer_floor'): def _nearest_gather(X: Tensor, x_out, y_out): return X[:,:,y_out,:][:,:,:,x_out] def _nearest_mode(x_resized: Tensor, nearest_mode: str, x_len): if nearest_mode == "round_prefer_floor": ret = (x_resized - 0.5).ceil() elif nearest_mode == "round_prefer_ceil": ret = (x_resized + 0.5).floor() elif nearest_mode == "floor": ret = x_resized.floor() elif nearest_mode == "ceil": ret = x_resized.ceil() return ret.cast(dtypes.int32).clip(0, x_len-1) def _coordinate_transformation(x_out, y_out, output_shape, scales_, roi=None): if coordinate_transformation_mode == "half_pixel": x_out = (x_out + 0.5) / scales_[-1] - 0.5 y_out = (y_out + 0.5) / scales_[-2] - 0.5 elif coordinate_transformation_mode == "align_corners": x_out = x_out * (X.shape[-1] - 1) / (output_shape[-1] - 1) y_out = y_out * (X.shape[-2] - 1) / (output_shape[-2] - 1) elif coordinate_transformation_mode == "asymmetric": x_out = x_out / scales_[-1] y_out = y_out / scales_[-2] elif coordinate_transformation_mode == "half_pixel_symmetric": x_out = X.shape[-1] / 2 * (1 - int(output_shape[-1]) / output_shape[-1]) + (x_out + 0.5) / scales_[-1] - 0.5 y_out = X.shape[-2] / 2 * (1 - int(output_shape[-2]) / output_shape[-2]) + (y_out + 0.5) / scales_[-2] - 0.5 elif coordinate_transformation_mode == "pytorch_half_pixel": x_out = (x_out + 0.5) / scales_[-1] - 0.5 if output_shape[-1] > 1 else Tensor([0]) y_out = (y_out + 0.5) / scales_[-2] - 0.5 if output_shape[-2] > 1 else Tensor([0]) elif coordinate_transformation_mode == "tf_crop_and_resize": x_out = roi[-1][0] * (X.shape[-1] - 1) + x_out * ((roi[-1][1] - roi[-1][0]) * (X.shape[-1] - 1) / (output_shape[-1] - 1)) if output_shape[-1] > 1 else Tensor([0.5 * (roi[-1][0] + roi[-1][1]) * (X.shape[-1] - 1)]) y_out = roi[-2][0] * (X.shape[-2] - 1) + y_out * ((roi[-2][1] - roi[-2][0]) * (X.shape[-2] - 1) / (output_shape[-2] - 1)) if output_shape[-2] > 1 else Tensor([0.5 * (roi[-2][0] + roi[-2][1]) * (X.shape[-2] - 1)]) return x_out.clip(0, X.shape[-1]-1), y_out.clip(0, X.shape[-2]-1) if roi is not None: roi = to_python_const(roi) roi = [(st,ed) for st, ed in zip(roi[:len(roi)//2], roi[len(roi)//2:])] roi_ = [(1,1)] * 4 if axes is not None: for a,r in zip(axes, roi): roi_[a] = r roi = roi_ if scales is not None: scales = to_python_const(scales) if axes is not None: scales_ = [1]*X.ndim for a,s in zip(axes, scales): scales_[a] = s scales = scales_ elif sizes is not None: sizes = to_python_const(sizes) scales = [] if axes is not None: sizes_ = [1]*X.ndim for a,s in zip(axes, sizes): sizes_[a] = s scales.append(s/X.shape[a]) sizes = sizes_ else: scales = [si/xs for xs, si in zip(X.shape, sizes)] if keep_aspect_ratio_policy == "not_larger": scale = min(scales) sizes = list(X.shape[:-2]) + [math.ceil(sh*scale) for sh in X.shape[-2:]] elif keep_aspect_ratio_policy == "not_smaller": scale = max(scales) sizes = list(X.shape[:-2]) + [math.ceil(sh*scale) for sh in X.shape[-2:]] output_shape = sizes if sizes else [math.floor(x*s) for x,s in zip(X.shape, scales)] output_shape_ = sizes if sizes else [x*s for x,s in zip(X.shape, scales)] scales_ = [os/xs for xs, os in zip(X.shape, output_shape)] x_out = Tensor.arange(output_shape[-1], dtype=dtypes.default_float) y_out = Tensor.arange(output_shape[-2], dtype=dtypes.default_float) if mode == "nearest": x_out, y_out = _coordinate_transformation(x_out, y_out, output_shape, scales_, roi) x_out = _nearest_mode(x_out, nearest_mode, X.shape[-1]) y_out = _nearest_mode(y_out, nearest_mode, X.shape[-1]) return _nearest_gather(X, x_out, y_out) if mode == "linear": x_out, y_out = _coordinate_transformation(x_out, y_out, output_shape_, scales, roi) ret = [] for y in to_python_const(y_out): for x in to_python_const(x_out): x_floor, y_floor = int(x), int(y) y_shrink = (y_floor, math.ceil(y)+1) x_shrink = (x_floor, math.ceil(x)+1) corners = to_python_const(X.shrink((None, None, y_shrink, x_shrink)))[0][0] wx, wy = math.ceil(x) - x, math.ceil(y) - y if x == x_floor and y == y_floor: weighted = corners[0][0] elif x == x_floor: weighted = corners[0][0] * wy + corners[1][0] * (1-wy) elif y == y_floor: weighted = corners[0][0] * wx + corners[0][1] * (1-wx) else: weighted = (corners[0][0] * wx + corners[0][1] * (1-wx)) * wy + \ (corners[1][0] * (wx) + corners[1][1] * (1-wx)) * (1-wy) ret.append(weighted) return Tensor(ret).reshape(output_shape) if mode == "cubic": raise NotImplementedError("cubic interpolation is not implemented") def CenterCropPad(t: Tensor, shape: Tensor, axes=None): if not axes: axes = list(range(t.ndim)) shrink_arg = [None] * t.ndim pad_arg = [None] * t.ndim shape = to_python_const(shape) for s, x in zip(shape, axes): tx = t.shape[x] if s < tx: shrink_arg[x] = (tx//2 - (s+1)//2, tx//2 + s//2) elif s > tx: pad_arg[x] = ((s-tx)//2, (s-tx+1)//2) return t.shrink(tuple(shrink_arg)).pad(tuple(pad_arg)) def OneHot(indices: Tensor, depth: Tensor, values: Tensor, axis=-1): depth = int(to_python_const(depth)) indices, rank = (indices < 0).where(indices+depth, indices), indices.ndim if axis < 0: axis += rank + 1 ls, rs = indices.shape[0:axis], indices.shape[axis: rank] cond = indices[:,None] == Tensor.arange(depth).reshape((1,) * len(ls) + (depth,) + (1,) * len(rs)) return cond.where(values[1], values[0]) def Erf(x: Tensor): t = 1.0 / (1.0 + 0.3275911 * x.abs()) term1 = 0.254829592 * t term2 = -0.284496736 * t ** 2 term3 = 1.421413741 * t ** 3 term4 = -1.453152027 * t ** 4 term5 = 1.061405429 * t ** 5 y = (term1 + term2 + term3 + term4 + term5) z = 1.0 - y * (-x * x).exp() return (x > 0).where(z, -z) def Compress(inp: Tensor, condition: Tensor, axis=None): if axis is None: inp = inp.flatten() axis = 0 if axis < 0: axis += inp.ndim con_np = to_python_const(condition) con = Tensor(np.arange(condition.shape[0])[con_np]) # no boolean indexing in Tensor return inp[tuple(con if i == axis else slice(None) for i in range(inp.ndim))] def EyeLike(x: Tensor, dtype=None, k=0): if dtype is None: dtype = x.dtype else: dtype = DTYPE_MAP[int(dtype)] dim = min(x.shape) if x.shape[0] == x.shape[1]: return Tensor.eye(dim, dtype=dtype) padarg = tuple(None if d == dim else (k, d-dim-k) for d in x.shape) return Tensor.eye(dim, dtype=dtype).pad(padarg) def Upsample(X, scales, mode): return Resize(X=X, scales=scales, mode=mode) def IsInf(x: Tensor, detect_negative=1, detect_positive=1): return (x == float("inf")) * bool(detect_positive) + (x == float("-inf")) * bool(detect_negative) def DequantizeLinear(x: Tensor, x_scale: Tensor, x_zero_point: Union[Tensor, int] = 0, axis=1, block_size=0): def numpy_repeat(t: Tensor, axis, repeats, out_shape): t = t.reshape(tuple(-1 if i == axis-1 else 1 if i == axis else sh for i,sh in enumerate(t.shape))) return t.repeat([repeats if i == axis else 1 for i in range(t.ndim)]).reshape(out_shape) if axis < 0: axis += x.ndim if block_size: x_zer, x_sc = numpy_repeat(x_zero_point, axis, block_size, x.shape), numpy_repeat(x_scale, axis, block_size, x.shape) else: x_sc = x_scale.reshape(*[1]*axis, *x_scale.shape, *[1]*(x.ndim - axis - x_scale.ndim)) x_zer = x_zero_point.reshape(*[1]*axis, *x_scale.shape, *[1]*(x.ndim - axis - x_scale.ndim)) if isinstance(x_zero_point, Tensor) else x_zero_point return ((x.float() - x_zer) * x_sc).cast(x_scale.dtype) def IsNaN(x: Tensor): return x != x # copied from https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_image_decoder.py # without importing PIL we'll have to manually decode a bunch of image formats like PNG, JPEG, WebP, etc def ImageDecoder(encoded_stream: Tensor, pixel_format="RGB"): try: import PIL.Image except ImportError as e: raise ImportError("Pillow must be installed to use the reference implementation of the ImageDecoder operator") from e img = PIL.Image.open(io.BytesIO(to_python_const(encoded_stream, tobytes=True))) if pixel_format == "BGR": return Tensor(np.array(img))[:, :, ::-1] if pixel_format == "RGB": return Tensor(np.array(img)) if pixel_format == "Grayscale": img = img.convert("L") decoded = Tensor(np.array(img)) return decoded.unsqueeze(-1) # (H, W) to (H, W, 1) raise ValueError(f"pixel_format={pixel_format!r} is not supported.") def AffineGrid(theta: Tensor, size: Tensor, align_corners=0): _, _, *data_sz = to_python_const(size) size_zeros, original_grid = Tensor.zeros(data_sz), Tensor.ones(data_sz) stackable = [original_grid] for dim, dim_sz in enumerate(data_sz): a = Tensor.arange(-1, 1.0001, 2/(dim_sz-1)) if align_corners == 1 else Tensor.arange(-1+1/dim_sz, 1, 2/dim_sz) if dim == 0: stackable = [a.reshape(dim_sz, *[1]*(len(data_sz)-1)) + size_zeros, *stackable] elif dim == 1: stackable = [a.reshape(1, dim_sz, *[1]*(len(data_sz)-2)) + size_zeros, *stackable] else: stackable = [a.reshape(1, dim_sz) + size_zeros, *stackable] original_grid = Tensor.stack(*stackable, dim=len(data_sz)) if original_grid.ndim == 3: N, dim_2d, dim_homo = theta.shape assert dim_2d == 2 and dim_homo == 3 H, W, dim_homo = original_grid.shape assert dim_homo == 3 original_grid = original_grid.reshape(H*W, dim_homo).transpose() return theta.matmul(original_grid).permute(0,2,1).reshape(N, H, W, dim_2d) assert original_grid.ndim == 4 N, dim_3d, dim_homo = theta.shape assert dim_3d == 3 and dim_homo == 4 D, H, W, dim_homo = original_grid.shape assert dim_homo == 4 original_grid = original_grid.reshape(D*H*W, dim_homo).transpose() return theta.matmul(original_grid).permute(0,2,1).reshape(N, D, H, W, dim_3d) # **************** com.microsoft Ops **************** def SkipLayerNormalization(x:Tensor, skip:Tensor, gamma, beta:Optional[Tensor]=None, bias:Optional[Tensor]=None, epsilon=None): if epsilon is None: epsilon=1e-12 x = x + skip + bias return x.layernorm(eps=epsilon) * gamma + beta, None, None, x def FastGelu(x:Tensor, bias:Optional[Tensor]=None): # this is tanh approximated return (x + bias).gelu() def EmbedLayerNormalization(input_ids: Tensor, segment_ids:Optional[Tensor]=None, word_embedding:Tensor=None, position_embedding:Tensor=None, segment_embedding:Optional[Tensor]=None, gamma=None, beta=None, mask:Optional[Tensor]=None, position_ids:Optional[Tensor]=None, epsilon=None, mask_index_type=None): # https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.EmbedLayerNormalization assert (segment_ids is None) is (segment_embedding is None) assert (mask is None) is (mask_index_type is None) assert mask is None, "functionality not supported yet" # TODO input_shape = input_ids.shape seq_length = input_shape[1] compute_seg_emb = (segment_embedding is not None and segment_ids is not None) vocab_size, max_position_embeddings, type_vocab_size = word_embedding.shape[0], position_embedding.shape[0], (segment_embedding.shape[0] if compute_seg_emb else None) def embedding(x:Tensor, vocab_size, weight:Tensor) -> Tensor: # TODO from nn.Embedding. Could probably upstream this to Tensor vocab_counter = Tensor.arange(vocab_size, dtype=x.dtype, requires_grad=False).reshape(1, 1, vocab_size).expand(*x.shape, vocab_size) return (vocab_counter == x.unsqueeze(2).expand(*x.shape, vocab_size)) @ weight # bert embedding layer if epsilon is None: epsilon = 1e-12 if position_ids is None: position_ids = Tensor.arange(seq_length, requires_grad=False).unsqueeze(0).expand(*input_shape) wrd_embedding_res = embedding(input_ids, vocab_size, word_embedding) pos_embedding_res = embedding(position_ids, max_position_embeddings, position_embedding) seg_embedding_res = embedding(segment_ids, type_vocab_size, segment_embedding) if compute_seg_emb else None embedding_sum = wrd_embedding_res + pos_embedding_res if seg_embedding_res is not None: embedding_sum = embedding_sum + seg_embedding_res out = embedding_sum.layernorm(eps=epsilon) * gamma + beta return out, None, embedding_sum def Attention(x:Tensor, weights, bias:Optional[Tensor]=None, mask_index:Optional[Tensor]=None, past:Optional[Tensor]=None, relative_position_bias:Optional[Tensor]=None, past_sequence_length:Optional[Tensor]=None, do_rotary=None, mask_filter_value=None, num_heads=None, past_present_share_buffer=None, qkv_hidden_sizes=None, scale=None, unidirectional=None): # https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.Attention assert num_heads is not None # required assert (qkv_hidden_sizes is None and past is not None) or (qkv_hidden_sizes is not None) assert relative_position_bias==do_rotary==past_sequence_length==mask_filter_value==past_present_share_buffer==scale==None, "functionality not supported yet" # TODO strange params hidden_size, v_hidden_size = qkv_hidden_sizes[1:] if qkv_hidden_sizes is not None else 2*(weights.shape[1] // 3,) if unidirectional: # gpt-style assert hidden_size == v_hidden_size xqkv = x.linear(weights, bias) xq, xk, xv = [xqkv.shrink([None, None, (i*hidden_size, (i+1)*hidden_size)]) for i in range(3)] else: # bert-style wq, wk, wv = weights[:,:hidden_size], weights[:,hidden_size:hidden_size+v_hidden_size], weights[:,hidden_size+v_hidden_size:] bq, bk, bv = (bias[:hidden_size], bias[hidden_size:hidden_size+v_hidden_size], bias[hidden_size+v_hidden_size]) if bias is not None else None xq, xk, xv = [x.linear(w, b) for w, b in zip((wq, wk, wv), (bq, bk, bv))] xq, xk, xv = [x.reshape(x.shape[0], x.shape[1], num_heads, -1).transpose(1, 2) for x in (xq, xk, xv)] if past is not None: xk, xv = Tensor.cat(past[0], xk, dim=-2), Tensor.cat(past[1], xv, dim=-2) present = Tensor.cat(xk.unsqueeze(0), xv.unsqueeze(0)) def attn(query, key, value, attn_mask): query_length, key_length = query.shape[-2], key.shape[-2] cdim = max(query_length, key_length) + 1 attn_weights = query @ key.transpose(-1, -2) / math.sqrt(value.shape[-1]) # This is where Tensor.scaled_dot_product_attention differs: causal_mask = Tensor.ones((cdim, cdim), requires_grad=False, dtype=dtypes.bool).tril(0)[key_length - query_length : key_length, :key_length] masked = Tensor.where(causal_mask, attn_weights, -math.inf) if attn_mask is not None: masked = masked + attn_mask return masked.softmax(-1) @ value bsz, _, seq_len, _ = xq.shape out = attn(xq, xk, xv, mask_index).transpose(1, 2).reshape(bsz, seq_len, -1) return out, present # **************** ai.onnx.preview.training Ops **************** # TODO not entirely sure these optimizers are correct def Adagrad(R, T, *inputs, decay_factor=0.0, epsilon=0.0, norm_coefficient=0.0): groups = len(inputs) // 3 grouped_inputs = [inputs[i::groups] for i in range(groups)] r = to_python_const(R / (1 + T * decay_factor)) ret = [] for X, G, H in grouped_inputs: X.grad = norm_coefficient * X + G X.grad.requires_grad, H.requires_grad = False, False # TODO manually turning off requires_grad, see TODO under (domain == "ai.onnx.preview.training") in onnx.py H.assign(H.detach() + X.grad * X.grad).realize() H_adaptive = H.sqrt() + epsilon X.assign(X.detach() - r * X.grad / H_adaptive) ret.extend([X, H]) ret = ret[::2] + ret[1::2] return tuple(ret) def Momentum(R, T, *inputs, alpha, beta, mode, norm_coefficient): groups = len(inputs) // 3 grouped_inputs = [inputs[i::groups] for i in range(groups)] T, R.requires_grad = to_python_const(T), False beta_adjusted = beta if T > 0 else 1 ret = [] for X, G, V in grouped_inputs: X.grad = (norm_coefficient * X + G).realize() X.grad.requires_grad, V.requires_grad = False, False V.assign(alpha * V + beta_adjusted * X.grad).realize() if mode == "standard": X.assign(X.detach() - R * V).realize() elif mode == "nesterov": X.assign(X.detach() - R * (X.grad + alpha + V)).realize() ret.extend([X, V]) ret = ret[::2] + ret[1::2] return tuple(ret) # copied from tinygrad/nn/optim.py: LAMB with some edits def Adam(R, T, *inputs, alpha=0.9, beta=0.999, epsilon=0.0, norm_coefficient=0.0, norm_coefficient_post=0.0): groups = len(inputs) // 4 grouped_inputs = [inputs[i::groups] for i in range(groups)] T, R.requires_grad = to_python_const(T), False ret = [] for X, G, V, H in grouped_inputs: X.grad = (norm_coefficient * X + G).realize() V.requires_grad, H.requires_grad, X.grad.requires_grad = False, False, False V.assign(alpha * V + (1.0 - alpha) * X.grad).realize() H.assign(beta * H + (1.0 - beta) * (X.grad * X.grad)).realize() up = (V / (1.0 - alpha**T)) / ((H / (1.0 - beta**T)).sqrt() + epsilon) if T > 0 else V / (H.sqrt() + epsilon) X.assign(X.detach() - R * up).realize() X = (1 - norm_coefficient_post) * X ret.extend([X, V, H]) ret = ret[::3] + ret[1::3] + ret[2::3] return tuple(ret)