import numpy as np from tinygrad.tensor import Tensor from models.transformer import TransformerBlock class ViT: def __init__(self, layers=12, embed_dim=192, num_heads=3): self.embedding = (Tensor.uniform(embed_dim, 3, 16, 16), Tensor.zeros(embed_dim)) self.embed_dim = embed_dim self.cls = Tensor.ones(1, 1, embed_dim) self.pos_embedding = Tensor.ones(1, 197, embed_dim) self.tbs = [ TransformerBlock(embed_dim=embed_dim, num_heads=num_heads, ff_dim=embed_dim*4, prenorm=True, act=lambda x: x.gelu()) for i in range(layers)] self.encoder_norm = (Tensor.uniform(embed_dim), Tensor.zeros(embed_dim)) self.head = (Tensor.uniform(embed_dim, 1000), Tensor.zeros(1000)) def patch_embed(self, x): x = x.conv2d(*self.embedding, stride=16) x = x.reshape(shape=(x.shape[0], x.shape[1], -1)).permute(order=(0,2,1)) return x def forward(self, x): ce = self.cls.add(Tensor.zeros(x.shape[0],1,1)) pe = self.patch_embed(x) x = ce.cat(pe, dim=1) x = x.add(self.pos_embedding).sequential(self.tbs) x = x.layernorm().linear(*self.encoder_norm) return x[:, 0].linear(*self.head) def load_from_pretrained(m): import io from extra.utils import fetch # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py if m.embed_dim == 192: url = "https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz" elif m.embed_dim == 768: url = "https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz" else: raise Exception("no pretrained weights for configuration") dat = np.load(io.BytesIO(fetch(url))) #for x in dat.keys(): # print(x, dat[x].shape, dat[x].dtype) m.embedding[0].assign(np.transpose(dat['embedding/kernel'], (3,2,0,1))) m.embedding[1].assign(dat['embedding/bias']) m.cls.assign(dat['cls']) m.head[0].assign(dat['head/kernel']) m.head[1].assign(dat['head/bias']) m.pos_embedding.assign(dat['Transformer/posembed_input/pos_embedding']) m.encoder_norm[0].assign(dat['Transformer/encoder_norm/scale']) m.encoder_norm[1].assign(dat['Transformer/encoder_norm/bias']) for i in range(12): m.tbs[i].query[0].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/query/kernel'].reshape(m.embed_dim, m.embed_dim)) m.tbs[i].query[1].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/query/bias'].reshape(m.embed_dim)) m.tbs[i].key[0].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/key/kernel'].reshape(m.embed_dim, m.embed_dim)) m.tbs[i].key[1].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/key/bias'].reshape(m.embed_dim)) m.tbs[i].value[0].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/value/kernel'].reshape(m.embed_dim, m.embed_dim)) m.tbs[i].value[1].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/value/bias'].reshape(m.embed_dim)) m.tbs[i].out[0].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/out/kernel'].reshape(m.embed_dim, m.embed_dim)) m.tbs[i].out[1].assign(dat[f'Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/out/bias'].reshape(m.embed_dim)) m.tbs[i].ff1[0].assign(dat[f'Transformer/encoderblock_{i}/MlpBlock_3/Dense_0/kernel']) m.tbs[i].ff1[1].assign(dat[f'Transformer/encoderblock_{i}/MlpBlock_3/Dense_0/bias']) m.tbs[i].ff2[0].assign(dat[f'Transformer/encoderblock_{i}/MlpBlock_3/Dense_1/kernel']) m.tbs[i].ff2[1].assign(dat[f'Transformer/encoderblock_{i}/MlpBlock_3/Dense_1/bias']) m.tbs[i].ln1[0].assign(dat[f'Transformer/encoderblock_{i}/LayerNorm_0/scale']) m.tbs[i].ln1[1].assign(dat[f'Transformer/encoderblock_{i}/LayerNorm_0/bias']) m.tbs[i].ln2[0].assign(dat[f'Transformer/encoderblock_{i}/LayerNorm_2/scale']) m.tbs[i].ln2[1].assign(dat[f'Transformer/encoderblock_{i}/LayerNorm_2/bias'])