import unittest import numpy as np from tinygrad.helpers import getenv, DType, DEBUG from tinygrad.lazy import Device from tinygrad.tensor import Tensor, dtypes from extra.utils import OSX, temp def _test_to_np(a:Tensor, np_dtype, target): print(a) na = a.numpy() print(na, na.dtype, a.lazydata.realized) assert na.dtype == np_dtype np.testing.assert_allclose(na, target) def _test_op(fxn, target_dtype:DType, target): c = fxn() if DEBUG >= 2: print(c.numpy()) assert c.dtype == target_dtype np.testing.assert_allclose(c.numpy(), target) def _test_cast(a:Tensor, target_dtype:DType, target): _test_op(lambda: a.cast(target_dtype), target_dtype, target) def _test_add(a:Tensor, b:Tensor, target_dtype:DType, target): _test_op(lambda: a+b, target_dtype, target) def _test_mul(a:Tensor, b:Tensor, target_dtype:DType, target): _test_op(lambda: a*b, target_dtype, target) def _test_matmul(a:Tensor, b:Tensor, target_dtype:DType, target): _test_op(lambda: a@b, target_dtype, target) def _test_add_upcast(a:Tensor, b:Tensor, target_dtype:DType, target): _test_op(lambda: a+b, target_dtype, target) def _test_mul_upcast(a:Tensor, b:Tensor, target_dtype:DType, target): _test_op(lambda: a*b, target_dtype, target) def _test_matmul_upcast(a:Tensor, b:Tensor, target_dtype:DType, target): _test_op(lambda: a@b, target_dtype, target) class TestBFloat16DType(unittest.TestCase): def test_bf16_to_float(self): with self.assertRaises(AssertionError): _test_cast(Tensor([100000], dtype=dtypes.bfloat16), dtypes.float32, [100000]) def test_float_to_bf16(self): with self.assertRaises(AssertionError): _test_cast(Tensor([100000], dtype=dtypes.float32), dtypes.bfloat16, [100000]) # torch.tensor([10000, -1, -1000, -10000, 20]).type(torch.bfloat16) @unittest.skipIf(Device.DEFAULT not in ["LLVM"], "bf16 only on LLVM") def test_bf16(self): t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.bfloat16) t.realize() back = t.cast(dtypes.float32) assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20) @unittest.skipIf(Device.DEFAULT not in ["LLVM"], "bf16 only on LLVM") def test_bf16_disk_write_read(self): t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.float32) t.to(f"disk:{temp('f32')}").realize() # hack to "cast" f32 -> bf16 dat = open(temp('f32'), "rb").read() adat = b''.join([dat[i+2:i+4] for i in range(0, len(dat), 4)]) with open(temp('bf16'), "wb") as f: f.write(adat) t = Tensor.empty(5, dtype=dtypes.bfloat16, device=f"disk:{temp('bf16')}").llvm().realize() back = t.cast(dtypes.float32) assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20) # for GPU, cl_khr_fp16 isn't supported (except now we don't need it!) # for LLVM, it segfaults because it can't link to the casting function @unittest.skipIf((getenv("CI", "") != "" and Device.DEFAULT in ["LLVM"]) or Device.DEFAULT == "WEBGPU", "float16 broken in some CI backends") class TestHalfDtype(unittest.TestCase): def test_half_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.float16), np.float16, [1,2,3,4]) def test_half_to_float(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float32, [1,2,3,4]) def test_half_to_int8(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.int8, [1,2,3,4]) def test_half_to_uint8(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.uint8, [1,2,3,4]) def test_half_to_int32(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.int32, [1,2,3,4]) def test_half_to_int64(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.int64, [1,2,3,4]) def test_float_to_half(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float16, [1,2,3,4]) def test_int8_to_half(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.float16, [1,2,3,4]) def test_uint8_to_half(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.float16, [1,2,3,4]) def test_half_add(self): _test_add(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [2,4,6,8]) def test_half_mul(self): _test_mul(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [1,4,9,16]) def test_half_matmul(self): _test_matmul(Tensor([[1,2],[3,4]], dtype=dtypes.float16), Tensor.eye(2, dtype=dtypes.float16), dtypes.float16, [[1,2],[3,4]]) def test_half_add_upcast_float(self): _test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [2,4,6,8]) def test_int8_add_upcast_half(self): _test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [2,4,6,8]) def test_int8_mul_upcast_half(self): _test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [1,4,9,16]) def test_half_mul_upcast_float(self): _test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [1,4,9,16]) def test_half_matmul_upcast_float(self): _test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.float16), Tensor.eye(2, dtype=dtypes.float32), dtypes.float32, [[1,2],[3,4]]) def test_int8_matmul_upcast_half(self): _test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.float16), dtypes.float16, [[1,2],[3,4]]) @unittest.skipIf(Device.DEFAULT == "WEBGPU", "webgpu does not support int8") class TestInt8Dtype(unittest.TestCase): def test_int8_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.int8), np.int8, [1,2,3,4]) def test_uint8_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.uint8), np.uint8, [1,2,3,4]) def test_int64_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.int64), np.int64, [1,2,3,4]) def test_float_to_int8(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.int8, [1,2,3,4]) def test_float_to_uint8(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.uint8, [1,2,3,4]) def test_float_to_int64(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.int64, [1,2,3,4]) def test_int8_to_float(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.float32, [1,2,3,4]) def test_int8_to_uint8(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.uint8, [1,2,3,4]) def test_int8_to_int32(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.int32, [1,2,3,4]) def test_int8_to_int64(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.int64, [1,2,3,4]) def test_uint8_to_float(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.float32, [1,2,3,4]) def test_uint8_to_int8(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.int8, [1,2,3,4]) def test_uint8_to_int64(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.int64, [1,2,3,4]) def test_int8_add(self): _test_add(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.int8, [2,4,6,8]) def test_int64_add(self): _test_add(Tensor([1,2,3,4], dtype=dtypes.int64),Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int64, [2,4,6,8]) def test_int8_mul(self): _test_mul(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.int8, [1,4,9,16]) def test_int64_mul(self): _test_mul(Tensor([1,2,3,4], dtype=dtypes.int64), Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int64, [1,4,9,16]) def test_int8_matmul(self): _test_matmul(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.int8), dtypes.int8, [[1,2],[3,4]]) def test_int64_matmul(self): _test_matmul(Tensor([[1,2],[3,4]], dtype=dtypes.int64), Tensor.eye(2, dtype=dtypes.int64), dtypes.int64, [[1,2],[3,4]]) def test_int8_add_upcast_float(self): _test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [2,4,6,8]) def test_int8_mul_upcast_float(self): _test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [1,4,9,16]) def test_int8_matmul_upcast_float(self): _test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.float32), dtypes.float32, [[1,2],[3,4]]) def test_int8_add_upcast_int64(self): _test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int64, [2,4,6,8]) def test_int8_mul_upcast_int64(self): _test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int64, [1,4,9,16]) def test_int8_matmul_upcast_int64(self): _test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.int64), dtypes.int64, [[1,2],[3,4]]) @unittest.skipIf(getenv("CUDA",0)==1, "cuda saturation works differently") def test_int8_to_uint8_negative(self): _test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint8), dtypes.uint8, [255, 254, 253, 252]) def test_uint8_to_int8_overflow(self): _test_op(lambda: Tensor([255, 254, 253, 252], dtype=dtypes.uint8).cast(dtypes.int8), dtypes.int8, [-1, -2, -3, -4]) class TestInt32Dtype(unittest.TestCase): def test_int32_to_np(self): _test_to_np(Tensor([1,2,3,4], dtype=dtypes.int32), np.int32, [1,2,3,4]) def test_float_to_int32(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.int32, [1,2,3,4]) def test_int64_to_int32(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int32, [1,2,3,4]) def test_int32_to_float(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int32), dtypes.float32, [1,2,3,4]) def test_int32_to_int64(self): _test_cast(Tensor([1,2,3,4], dtype=dtypes.int32), dtypes.int64, [1,2,3,4]) def test_int32_add(self): _test_add(Tensor([1,2,3,4], dtype=dtypes.int32), Tensor([1,2,3,4], dtype=dtypes.int32), dtypes.int32, [2,4,6,8]) def test_int32_mul(self): _test_mul(Tensor([1,2,3,4], dtype=dtypes.int32), Tensor([1,2,3,4], dtype=dtypes.int32), dtypes.int32, [1,4,9,16]) def test_int32_matmul(self): _test_matmul(Tensor([[1,2],[3,4]], dtype=dtypes.int32), Tensor.eye(2, dtype=dtypes.int32), dtypes.int32, [[1,2],[3,4]]) def test_int32_add_upcast_float(self): _test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int32), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [2,4,6,8]) def test_int32_mul_upcast_float(self): _test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int32), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [1,4,9,16]) def test_int32_matmul_upcast_float(self): _test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int32), Tensor.eye(2, dtype=dtypes.float32), dtypes.float32, [[1,2],[3,4]]) def test_int32_add_upcast_int64(self): _test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int32), Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int64, [2,4,6,8]) def test_int32_mul_upcast_int64(self): _test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int32), Tensor([1,2,3,4], dtype=dtypes.int64), dtypes.int64, [1,4,9,16]) def test_int32_matmul_upcast_int64(self): _test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int32), Tensor.eye(2, dtype=dtypes.int64), dtypes.int64, [[1,2],[3,4]]) if __name__ == '__main__': unittest.main()