from typing import Tuple, Dict, List from tinygrad.dtype import DType from tinygrad.tensor import Device, Tensor from tinygrad.engine.jit import TinyJit from tinygrad.nn.state import get_state_dict from tinygrad.dtype import dtypes import json EXPORT_SUPPORTED_DEVICE = ["WEBGPU", "WEBGL", "CLANG", "CUDA", "GPU"] web_utils = { "getTensorBuffer": """const getTensorBuffer = (safetensorBuffer, tensorMetadata) => { return safetensorBuffer.subarray(...tensorMetadata.data_offsets); }""", "getTensorMetadata": """const getTensorMetadata = (safetensorBuffer) => { const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true)); const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength))); return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}])); };""" } def compile_net(run:TinyJit, special_names:Dict[int,str]) -> Tuple[Dict[str,str],List[Tuple[str,List[str],List[int]]],Dict[str,Tuple[int,DType,int]],Dict[str,Tensor]]: functions, bufs, bufs_to_save, statements, bufnum = {}, {}, {}, [], 0 for ji in run.jit_cache: fxn = ji.prg functions[fxn.name] = fxn.prg # NOTE: this assumes all with the same name are the same cargs = [] for i,arg in enumerate(ji.rawbufs): key = id(arg) if key not in bufs: if key in special_names: bufs[key] = (special_names[key], arg.size*arg.dtype.itemsize, arg.dtype, key) else: bufs[key] = (f"buf_{bufnum}", arg.size*arg.dtype.itemsize, arg.dtype, key) bufnum += 1 if i > 0: bufs_to_save[bufs[key][0]] = arg # if first usage of a buffer is not an output, and it's not a special name cargs.append(bufs[key][0]) statements.append((fxn.name, cargs, fxn.global_size, fxn.local_size)) return functions, statements, {name:(size, dtype, key) for (name,size,dtype,key) in bufs.values()}, bufs_to_save def jit_model(model, *args) -> Tuple[TinyJit,Dict[int,str]]: assert hasattr(model, "forward") or callable(model), "model needs a forward function" @TinyJit def run(*x): out = model.forward(*x) if hasattr(model, "forward") else model(*x) assert isinstance(out, tuple) or isinstance(out, list) or isinstance(out, Tensor), "model output must be a Tensor, tuple, or a list of Tensors for export" out = [out] if isinstance(out, Tensor) else out return [o.realize() for o in out] # twice to run the JIT for _ in range(2): the_output = run(*args) special_names = {} # hack to put the inputs back for (j,i),idx in run.input_replace.items(): realized_input = args[idx].lazydata.base.realized run.jit_cache[j].rawbufs[i] = realized_input special_names[id(realized_input)] = f'input{idx}' # TODO: fetch this from the jit in self.input_replace and self.ret (hint: use get_parameters on self.ret) for i, output in enumerate(the_output): special_names[id(output.lazydata.base.realized)] = f'output{i}' return run, special_names def export_model_clang(functions:Dict[str,str], statements:Dict[str,Tuple[str,int,int]], bufs:Dict[str,Tuple[str,int,int]], bufs_to_save:Dict[str,Tensor], input_names:List[str], output_names:List[str]) -> str: from tinygrad.runtime.ops_clang import CLANG_PROGRAM_HEADER cprog = [CLANG_PROGRAM_HEADER] for name,cl in bufs_to_save.items(): weight = ''.join(["\\x%02X"%x for x in bytes(cl._buf)]) cprog.append(f"unsigned char {name}_data[] = \"{weight}\";") inputs = ", ".join([f'float* {input}' for input in input_names]) outputs = ", ".join([f'float* {output}' for output in output_names]) cprog += [f"float {name}[{len}];" if name not in bufs_to_save else f"float *{name} = (float *){name}_data;" for name,(len,dtype,_key) in bufs.items() if name not in ['input', 'outputs']] cprog += list(functions.values()) cprog += [f"void net({inputs}, {outputs}) {{"] + [f"{name}({', '.join(args)});" for (name, args, _global_size, _local_size) in statements] + ["}"] return '\n'.join(cprog) def export_model_webgl(functions, statements, bufs, bufs_to_save, weight_names, input_names, output_names) -> str: header = f""" function setupNet(gl, safetensor) {{ function createShaderProgram(gl, code) {{ const vertexShader = loadShader(gl, gl.VERTEX_SHADER, '#version 300 es\\nin vec2 in_position;in vec2 in_uv;out vec2 uv;void main(){{gl_Position=vec4(in_position,0.0,1.0);uv=in_uv;}}'); const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, code); const shaderProgram = gl.createProgram(); gl.attachShader(shaderProgram, vertexShader); gl.attachShader(shaderProgram, fragmentShader); gl.linkProgram(shaderProgram); if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {{ console.log(`Unable to initialize the shader program: ${{gl.getProgramInfoLog(shaderProgram)}}`); return null; }} return shaderProgram; }} function loadShader(gl, type, source) {{ const shader = gl.createShader(type); gl.shaderSource(shader, source); gl.compileShader(shader); if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {{ console.log(`An error occurred compiling the shaders: ${{gl.getShaderInfoLog(shader)}}`); gl.deleteShader(shader); return null; }} return shader; }} function setupVertexData(gl, program, vertices) {{ let vao = gl.createVertexArray(); gl.bindVertexArray(vao); let vertexBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW); const positionLocation = gl.getAttribLocation(program, 'in_position'); const uvLocation = gl.getAttribLocation(program, 'in_uv'); gl.enableVertexAttribArray(positionLocation); gl.vertexAttribPointer(positionLocation, 2, gl.FLOAT, false, 4 * 4, 0); gl.enableVertexAttribArray(uvLocation); gl.vertexAttribPointer(uvLocation, 2, gl.FLOAT, false, 4 * 4, 2 * 4); gl.bindVertexArray(null); return vao; }} function runProgram(gl, kernelName, program, textures) {{ let framebuffer = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textures[0].tex, 0); gl.useProgram(program); gl.uniform1i(gl.getUniformLocation(program, "width"), textures[0].width); const vao = setupVertexData(gl, program, [-1, 1, 0, 1, -1, -1, 0, 0, 1, 1, 1, 1, 1, -1, 1, 0]); gl.bindVertexArray(vao); // Texture 0 is the framebuffer texture, so we skip that for (let i = 1; i < textures.length; i++) {{ gl.activeTexture(gl.TEXTURE0 + i-1); gl.bindTexture(gl.TEXTURE_2D, textures[i].tex); gl.uniform1i(gl.getUniformLocation(program, 'data' + i), i-1); }} gl.viewport(0, 0, textures[0].width, textures[0].height); gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4); gl.bindFramebuffer(gl.FRAMEBUFFER, null); for (let i = 1; i < textures.length; i++) {{ gl.activeTexture(gl.TEXTURE0 + i-1); gl.bindTexture(gl.TEXTURE_2D, null); }} console.log("Finished running: " + kernelName); }} function limitTextureDims(size, threshold) {{ if (size <= threshold) {{ return [size, 1] }}; for (let i = 2; i < threshold + 1; i++) {{ if ((size % i == 0) && (Math.floor(size / i) <= threshold)) {{ return [Math.floor(size / i), i]; }} }} return [size, 1]; }} function updateTextureData(gl, texture, data, isHalf) {{ gl.bindTexture(gl.TEXTURE_2D, texture.tex); gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, texture.width, texture.height, gl.RED, (isHalf) ? gl.HALF_FLOAT : gl.FLOAT, data); gl.bindTexture(gl.TEXTURE_2D, null); }} function readTextureData(gl, texture) {{ const framebuffer = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture.tex, 0); if (gl.checkFramebufferStatus(gl.FRAMEBUFFER) !== gl.FRAMEBUFFER_COMPLETE) {{ throw new Error('Framebuffer not complete'); }} let data = new Float32Array(texture.width * texture.height); gl.readPixels(0, 0, texture.width, texture.height, gl.RED, gl.FLOAT, data); gl.bindFramebuffer(gl.FRAMEBUFFER, null); gl.deleteFramebuffer(framebuffer); return data; }} function createTexture(gl, size, isHalf, tensorBuffer) {{ const texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); const internalFormat = gl.RGBA; const texSize = limitTextureDims(size, gl.getParameter(gl.MAX_TEXTURE_SIZE)); let weights; if (tensorBuffer != null) {{ if (!isHalf) weights = new Float32Array(tensorBuffer.buffer, tensorBuffer.byteOffset, tensorBuffer.byteLength / Float32Array.BYTES_PER_ELEMENT); else weights = new Uint16Array(tensorBuffer.buffer, tensorBuffer.byteOffset, tensorBuffer.byteLength / Uint16Array.BYTES_PER_ELEMENT); }} else {{ if (!isHalf) weights = new Float32Array(size).fill(0.0); else weights = new Uint16Array(size).fill(0.0); }} if (size != weights.length) console.log("Weights length: " + weights.length + ", texsize: " + texSize[0]*texSize[1]); gl.texImage2D(gl.TEXTURE_2D, 0, (isHalf) ? gl.R16F : gl.R32F, texSize[0], texSize[1], 0, gl.RED, (isHalf) ? gl.HALF_FLOAT : gl.FLOAT, weights); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.bindTexture(gl.TEXTURE_2D, null); return {{ tex: texture, width: texSize[0], height: texSize[1] }}; }} {web_utils["getTensorBuffer"]} {web_utils["getTensorMetadata"]} const metadata = getTensorMetadata(safetensor); """ textures = '\n '.join([f"const {name} = " + (f"createTexture(gl, {size/(2 if dtype == dtypes.half else 4)}, {'true' if dtype == dtypes.half else 'false'});" if _key not in weight_names else f"createTexture(gl, {size/(2 if dtype == dtypes.half else 4)}, {'true' if dtype == dtypes.half else 'false'}, getTensorBuffer(safetensor, metadata['{weight_names[_key]}']))") + ";" for name,(size,dtype,_key) in bufs.items()]) kernels = '\n\n'.join([f"const {key} = `{code.replace(key, 'main').replace('version 330', 'version 300 es')}`;" for key, code in functions.items()]) kernel_names = ', '.join([name for (name, _args, _global_size, _local_size) in statements]) kernel_calls = '\n '.join([f"runProgram(gl, '{name}', programs[{i}], [{', '.join(args)}]);" for i, (name, args, _global_size, _local_size) in enumerate(statements) ]) copy_inputs = "\n".join([f'updateTextureData(gl, {name}, _{name}, {"true" if dtype == dtypes.half else "false"});' for name,(size,dtype,_key) in bufs.items() if "input" in name]) entry_point = f""" return function({",".join([f"_{name}" for name,(size,dtype,_key) in bufs.items() if "input" in name])}) {{ const ext = gl.getExtension('EXT_color_buffer_float'); {copy_inputs} {kernel_calls} return readTextureData(gl, output0); }} """ programs = f"let programs = [{kernel_names}].map((code) => createShaderProgram(gl, code));" return f"{header}\n{kernels}\n{textures}\n{programs}\n{entry_point}}}" def export_model_webgpu(functions, statements, bufs, bufs_to_save, weight_names, input_names, output_names) -> Tuple[str,int,int]: kernel_code = '\n\n'.join([f"const {key} = `{code.replace(key, 'main')}`;" for key, code in functions.items()]) kernel_names = ', '.join([name for (name, _args, _global_size, _local_size) in statements]) kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, piplines[{i}], [{', '.join(args)}], {global_size});" for i, (_name, args, global_size, _local_size) in enumerate(statements) ]) _bufs = '\n '.join([f"const {name} = " + (f"createEmptyBuf(device, {size});" if _key not in weight_names else f"createWeightBuf(device, {size}, getTensorBuffer(safetensor, metadata['{weight_names[_key]}']))") + ";" for name,(size,dtype,_key) in bufs.items()]) gpu_write_bufs = '\n '.join([f"const gpuWriteBuffer{i} = device.createBuffer({{size:{input_name}.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }});" for i,input_name in enumerate(input_names)]) input_writers = '\n '.join([f"await gpuWriteBuffer{i}.mapAsync(GPUMapMode.WRITE);\n new Float32Array(gpuWriteBuffer{i}.getMappedRange()).set(" + f'_{inp_name});' + f"\n gpuWriteBuffer{i}.unmap();\n commandEncoder.copyBufferToBuffer(gpuWriteBuffer{i}, 0, {inp_name}, 0, gpuWriteBuffer{i}.size);" for i,inp_name in enumerate(input_names)]) gpu_read_bufs = '\n '.join([f"const gpuReadBuffer{i} = device.createBuffer({{size:{output_name}.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }});" for i,output_name in enumerate(output_names)]) outbuf_copies = '\n '.join([f"commandEncoder.copyBufferToBuffer({output_name}, 0, gpuReadBuffer{i}, 0, output{i}.size);" for i,output_name in enumerate(output_names)]) output_readers = '\n '.join([f"await gpuReadBuffer{i}.mapAsync(GPUMapMode.READ);\n const resultBuffer{i} = new Float32Array(gpuReadBuffer{i}.size);\n resultBuffer{i}.set(new Float32Array(gpuReadBuffer{i}.getMappedRange()));\n gpuReadBuffer{i}.unmap();" for i in range(len(output_names))]) output_return = '[{}]'.format(",".join([f'resultBuffer{i}' for i in range(len(output_names))])) return f""" {web_utils["getTensorBuffer"]} {web_utils["getTensorMetadata"]} const createEmptyBuf = (device, size) => {{ return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }}); }}; const createWeightBuf = (device, size, data) => {{ const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.STORAGE }}); new Uint8Array(buf.getMappedRange()).set(data); buf.unmap(); return buf; }}; const addComputePass = (device, commandEncoder, pipeline, bufs, workgroup) => {{ const bindGroup = device.createBindGroup({{layout: pipeline.getBindGroupLayout(0), entries: bufs.map((buffer, index) => ({{ binding: index, resource: {{ buffer }} }}))}}); const passEncoder = commandEncoder.beginComputePass(); passEncoder.setPipeline(pipeline); passEncoder.setBindGroup(0, bindGroup); passEncoder.dispatchWorkgroups(...workgroup); passEncoder.end(); }}; {kernel_code} const setupNet = async (device, safetensor) => {{ const metadata = getTensorMetadata(safetensor); {_bufs} {gpu_write_bufs} {gpu_read_bufs} const kernels = [{kernel_names}]; const piplines = await Promise.all(kernels.map(name => device.createComputePipelineAsync({{layout: "auto", compute: {{ module: device.createShaderModule({{ code: name }}), entryPoint: "main" }}}}))); return async ({",".join([f"_{input_name}" for input_name in input_names])}) => {{ const commandEncoder = device.createCommandEncoder(); {input_writers} {kernel_calls} {outbuf_copies} const gpuCommands = commandEncoder.finish(); device.queue.submit([gpuCommands]); {output_readers} return {output_return}; }} }} """ + f"\n\nconst loadNet = async (device) => {{ return await fetch('net.safetensors').then(x => x.arrayBuffer()).then(x => setupNet(device, new Uint8Array(x))); }}" def export_model(model, target:str, *inputs): assert Device.DEFAULT in EXPORT_SUPPORTED_DEVICE, "only WEBGPU, WEBGL, CLANG, CUDA, GPU, METAL are supported" run,special_names = jit_model(model, *inputs) functions, statements, bufs, bufs_to_save = compile_net(run, special_names) state = get_state_dict(model) weight_names = {id(x.lazydata.base.realized): name for name, x in state.items()} input_names = [name for _,name in special_names.items() if "input" in name] output_names = [name for _,name in special_names.items() if "output" in name] prg = "" if target == "clang": prg = export_model_clang(functions, statements, bufs, bufs_to_save, input_names, output_names) elif target == "webgpu": prg = export_model_webgpu(functions, statements, bufs, bufs_to_save, weight_names, input_names, output_names) elif target == "webgl": prg = export_model_webgl(functions, statements, bufs, bufs_to_save, weight_names, input_names, output_names) else: prg = json.dumps({ "backend": Device.DEFAULT, "inputs": [{ "size": bufs[name][0], "dtype": bufs[name][1].name } for name in input_names], "outputs": [{ "size": bufs[name][0], "dtype": bufs[name][1].name } for name in output_names], "functions": functions, "statements": [{ "kernel": kernel, "args": args, "global_size": global_size, "local_size": local_size } for (kernel, args, global_size, local_size) in statements], "buffers": { name: { "size": size, "dtype": dtype.name, "id": weight_names[_key] if _key in weight_names else "" } for name, (size,dtype,_key) in bufs.items() if name not in ["input", "outputs"] } }) return prg, {input:bufs[input][0] for input in input_names}, {output:bufs[output][0] for output in output_names}, state