#!/usr/bin/env python import numpy as np from tinygrad.tensor import Tensor from tinygrad.utils import fetch_mnist import tinygrad.optim as optim from tqdm import trange # load the mnist dataset X_train, Y_train, X_test, Y_test = fetch_mnist() # train a model np.random.seed(1337) def layer_init(m, h): ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h) return ret.astype(np.float32) class TinyBobNet: def __init__(self): self.l1 = Tensor(layer_init(784, 128)) self.l2 = Tensor(layer_init(128, 10)) def forward(self, x): return x.dot(self.l1).relu().dot(self.l2).logsoftmax() # optimizer model = TinyBobNet() optim = optim.SGD([model.l1, model.l2], lr=0.001) #optim = optim.Adam([model.l1, model.l2], lr=0.001) BS = 128 losses, accuracies = [], [] for i in (t := trange(1000)): samp = np.random.randint(0, X_train.shape[0], size=(BS)) x = Tensor(X_train[samp].reshape((-1, 28*28))) Y = Y_train[samp] y = np.zeros((len(samp),10), np.float32) # correct loss for NLL, torch NLL loss returns one per row y[range(y.shape[0]),Y] = -10.0 y = Tensor(y) # network outs = model.forward(x) # NLL loss function loss = outs.mul(y).mean() loss.backward() optim.step() cat = np.argmax(outs.data, axis=1) accuracy = (cat == Y).mean() # printing loss = loss.data losses.append(loss) accuracies.append(accuracy) t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy)) # evaluate def numpy_eval(): Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)))) Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1) return (Y_test == Y_test_preds).mean() accuracy = numpy_eval() print("test set accuracy is %f" % accuracy) assert accuracy > 0.95