import unittest import numpy as np from tinygrad import Tensor, Variable class TestTensorVariable(unittest.TestCase): def test_add_tvar(self): vv = Variable("a", 0, 10).bind(1) ret = (Tensor(vv) + 3).item() assert ret == 4 def test_inner_tvar_node(self): vv = Variable("w", 0, 10).bind(2) ret = Tensor.from_uop(vv * 4).item() assert ret == 8 def test_inner_tvar_mul(self): vv = Variable("w", 0, 10).bind(2) assert (Tensor(3) * vv).item() == 6 def test_inner_tvar_mul_node(self): vv = Variable("w", 0, 10).bind(2) assert (Tensor(3) * (vv * 4)).item() == 24 def test_symbolic_mean(self): vv = Variable("a", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(2, vv) ret = t.mean().item() assert ret == 1 def test_symbolic_mean_2d(self): vv = Variable("a", 1, 10).bind(2) vv2 = Variable("b", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv) ret = t.mean().item() assert ret == 1 def test_symbolic_mean_2d_axis_1(self): vv = Variable("a", 1, 10).bind(2) vv2 = Variable("b", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv) ret = t.mean(axis=1).reshape(2, 1).numpy() assert np.all(ret == 1) def test_symbolic_mean_2d_add(self): add_term = Variable("c", 0, 10).bind(1) vv = Variable("a", 1, 10).bind(1) vv2 = Variable("b", 1, 10).bind(1) t = Tensor.ones(2, 2).contiguous().reshape(vv2+add_term, vv+add_term) ret = t.mean().item() assert ret == 1 def test_symbolic_var(self): vv = Variable("a", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(2, vv) ret = t.var().item() assert ret == 0 @unittest.skip("symbolic arange isn't supported") def test_symbolic_arange(self): vv = Variable("a", 1, 10).bind(2) ret = Tensor.arange(0, vv) ret.realize() if __name__ == '__main__': unittest.main()