import unittest from test.helpers import assert_jit_cache_len from tinygrad import Variable, Tensor, TinyJit import numpy as np class TestSymbolicJit(unittest.TestCase): def test_plus1(self): def f(a): return (a+1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) symbolic = jf(a.reshape(3, vi)).reshape(3, i).numpy() expected = f(a).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_add(self): def f(a, b): return (a+b).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(3, i) symbolic = jf(a.reshape(3, vi), b.reshape(3, vi)).reshape(3, i).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_matmul(self): def f(a, b): return (a@b).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(i, 5) symbolic = jf(a.reshape(3, vi), b.reshape(vi, 5)).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_mixed_with_no_symbol_kernel(self): def f(a, b): s = (a@b).realize() s = (s+s).realize() # this one does not have symbols in input return s jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(i, 5) symbolic = jf(a.reshape(3, vi), b.reshape(vi, 5)).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 2) def test_attention(self): def f(q, k, v): return Tensor.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) q = Tensor.rand(2, 1, 4, 8) k = Tensor.rand(2, i, 4, 8) v = Tensor.rand(2, i, 4, 8) symbolic = jf(q, k.reshape(2, vi, 4, 8), v.reshape(2, vi, 4, 8)).reshape(2, 4, 1, 8).numpy() expected = f(q, k, v).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 5) def test_cat_dim0(self): def f(a, b): return a.cat(b, dim=0).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(i, 3) b = Tensor.rand(2, 3) symbolic = jf(a.reshape(vi, 3), b).reshape(i+2, 3).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_cat_dim1(self): def f(a, b): return a.cat(b, dim=1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(3, 2) symbolic = jf(a.reshape(3, vi), b).reshape(3, i+2).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_cat_dim0_two_vars(self): def f(a, b): return a.cat(b, dim=0).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(i, 3) b = Tensor.rand(j, 3) symbolic = jf(a.reshape(vi, 3), b.reshape(vj, 3)).reshape(i+j, 3).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_cat_dim1_two_vars(self): def f(a, b): return a.cat(b, dim=1).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(3, i) b = Tensor.rand(3, j) symbolic = jf(a.reshape(3, vi), b.reshape(3, vj)).reshape(3, i+j).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_two_vars_plus1_ij(self): def f(a, b): return (a@b+1).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(i, 3) b = Tensor.rand(3, j) symbolic = jf(a.reshape(vi, 3), b.reshape(3, vj)).reshape(i, j).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_two_vars_plus1_ji(self): def f(a, b): return (a@b+1).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(j, 3) b = Tensor.rand(3, i) symbolic = jf(a.reshape(vj, 3), b.reshape(3, vi)).reshape(j, i).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_jit_symbolic_shape_mismatch(self): @TinyJit def add(a, b): return (a+b).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i).reshape(3, vi) b = Tensor.rand(3, i).reshape(3, vi) add(a, b) vi2 = Variable("i", 1, 10).bind(7) a = Tensor.rand(3, 7).reshape(3, vi2) bad = Tensor.rand(4, 7).reshape(4, vi2) with self.assertRaises(AssertionError): add(a, bad) def test_shrink(self): # shrink is a movement, so we pair it with a simple function to test the JIT interaction def f(a): return (a+1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(7, 11) symbolic = a.shrink(((3,5),(vi,vi+2))) symbolic = jf(symbolic).numpy() expected = f(a.shrink(((3,5),(i,i+2)))).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_ones_sum(self): def f(a): return a.sum().realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) t = Tensor.ones(i) symbolic = jf(t.reshape(vi)).item() expected = f(t).item() np.testing.assert_equal(symbolic, expected) def test_mean(self): def f(a): return a.mean().realize() def f0(a): return a.mean(0).realize() def f1(a): return a.mean(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) # aixs = None a = Tensor.rand(i, 3) symbolic = jf(a.reshape(vi, 3)).numpy() expected = a.mean().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 0 a = Tensor.rand(i, 3) symbolic = jf0(a.reshape(vi, 3)).numpy() expected = a.mean(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 1 a = Tensor.rand(i, 3) symbolic = jf1(a.reshape(vi, 3)).reshape(i).numpy() expected = a.mean(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_mean_2d(self): def f(a): return a.mean().realize() def f0(a): return a.mean(0).realize() def f1(a): return a.mean(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) # aixs = None a = Tensor.rand(i, j) symbolic = jf(a.reshape(vi, vj)).numpy() expected = a.mean().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 0 a = Tensor.rand(i, j) symbolic = jf0(a.reshape(vi, vj)).reshape(j).numpy() expected = a.mean(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 1 a = Tensor.rand(i, j) symbolic = jf1(a.reshape(vi, vj)).reshape(i).numpy() expected = a.mean(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_var(self): def f(a): return a.var().realize() def f0(a): return a.var(0).realize() def f1(a): return a.var(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) # aixs = None a = Tensor.rand(i, 3) symbolic = jf(a.reshape(vi, 3)).numpy() expected = a.var().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 0 a = Tensor.rand(i, 3) symbolic = jf0(a.reshape(vi, 3)).numpy() expected = a.var(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 1 a = Tensor.rand(i, 3) symbolic = jf1(a.reshape(vi, 3)).reshape(i).numpy() expected = a.var(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_var_2d(self): def f(a): return a.var().realize() def f0(a): return a.var(0).realize() def f1(a): return a.var(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) # aixs = None a = Tensor.rand(i, j) symbolic = jf(a.reshape(vi, vj)).numpy() expected = a.var().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 0 a = Tensor.rand(i, j) symbolic = jf0(a.reshape(vi, vj)).reshape(j).numpy() expected = a.var(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # aixs = 1 a = Tensor.rand(i, j) symbolic = jf1(a.reshape(vi, vj)).reshape(i).numpy() expected = a.var(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) if __name__ == '__main__': unittest.main()