import time, math, unittest import numpy as np from typing import List, Callable import torch from tinygrad.helpers import getenv, IMAGE, DEBUG, CI, Context from tinygrad import Tensor, Device, dtypes from tinygrad.tensor import _to_np_dtype import functools if CI: import warnings warnings.filterwarnings("ignore", message="Non-empty compiler output encountered") FORWARD_ONLY = getenv("FORWARD_ONLY", 0) PRINT_TENSORS = getenv("PRINT_TENSORS", 0) def helper_test_op(shps, torch_fxn, tinygrad_fxn=None, atol=1e-6, rtol=1e-3, grad_atol=1e-4, grad_rtol=1e-3, forward_only=False, vals=None, low=-2, high=2): if tinygrad_fxn is None: tinygrad_fxn = torch_fxn ts, tst = prepare_test_op(low, high, shps, vals, forward_only) st = time.monotonic() out = torch_fxn(*ts) torch_fp = time.monotonic() - st # move inputs to a different device, test the device of intermediate tensors are correct if mt:=getenv("MOVE_TENSOR", ""): for t in tst: t.to_(mt) st = time.monotonic() ret = tinygrad_fxn(*tst).realize() tinygrad_fp = time.monotonic() - st def compare(s, tinygrad_output, torch_output, atol, rtol): if PRINT_TENSORS: print(s, tinygrad_output, torch_output) try: assert tinygrad_output.shape == torch_output.shape, f"shape mismatch: tinygrad={tinygrad_output.shape} | torch={torch_output.shape}" assert tinygrad_output.dtype == torch_output.dtype, f"dtype mismatch: tinygrad={tinygrad_output.dtype} | torch={torch_output.dtype}" np.testing.assert_allclose(tinygrad_output, torch_output, atol=atol, rtol=rtol) except Exception as e: raise Exception(f"{s} failed shape {tinygrad_output.shape}: {e}") if DEBUG >= 6: np.set_printoptions(linewidth=200, suppress=True) print(ret.numpy()) print(out.detach().numpy()) compare("forward pass", ret.numpy(), out.detach().numpy(), atol=atol, rtol=rtol) torch_fbp, tinygrad_fbp = np.nan, np.nan if not forward_only and not FORWARD_ONLY: st = time.monotonic() (out+1).square().mean().backward() torch_fbp = time.monotonic() - st st = time.monotonic() (ret+1).square().mean().backward() for tt in tst: tt.grad.realize() tinygrad_fbp = time.monotonic() - st for i, (t, tt) in enumerate(zip(ts, tst)): compare(f"backward pass tensor {i}", tt.grad.numpy(), t.grad.detach().numpy(), atol=grad_atol, rtol=grad_rtol) if not CI: print("\ntesting %40r torch/tinygrad fp: %.2f / %.2f ms bp: %.2f / %.2f ms " % \ (shps, torch_fp*1000, tinygrad_fp*1000, torch_fbp*1000, tinygrad_fbp*1000), end="") def prepare_test_op(low, high, shps, vals, forward_only=False): if shps is None: ts = [torch.tensor(x, requires_grad=(not forward_only)) for x in vals] else: np.random.seed(0) np_data = [np.random.uniform(low=low, high=high, size=size).astype(_to_np_dtype(dtypes.default_float)) for size in shps] ts = [torch.tensor(data, requires_grad=(not forward_only)) for data in np_data] tst = [Tensor(x.detach().numpy(), requires_grad=(not forward_only and not FORWARD_ONLY)) for x in ts] return ts, tst class TestOps(unittest.TestCase): def helper_test_exception(self, shps, torch_fxn, tinygrad_fxn, expected, exact=False, vals=None, low=-1.5, high=1.5): if getenv("MOCKGPU") and Device.DEFAULT == "NV": self.skipTest('helper_test_exception fails in CI CUDA') ts, tst = prepare_test_op(low, high, shps, vals) with self.assertRaises(expected) as torch_cm: torch_fxn(*ts) with self.assertRaises(expected) as tinygrad_cm: tinygrad_fxn(*tst) if exact: self.assertEqual(str(torch_cm.exception), str(tinygrad_cm.exception)) if not CI: print("\ntesting %40r torch/tinygrad exception: %s / %s" % (shps, torch_cm.exception, tinygrad_cm.exception), end="") def test_full_like(self): a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.float32) b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.float32) helper_test_op([], lambda: torch.full_like(b, 4), lambda: Tensor.full_like(a, 4), forward_only=True) a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.int32) b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.int32) helper_test_op([], lambda: torch.full_like(b, 4), lambda: Tensor.full_like(a, 4), forward_only=True) def test_full(self): helper_test_op([], lambda: torch.full((45,65), 4, dtype=torch.int32), lambda: Tensor.full((45,65), 4), forward_only=True) def test_negative_dims(self): creation_methods: List[Callable[..., Tensor]] = [ Tensor.empty, Tensor.rand, Tensor.zeros, Tensor.ones, Tensor.randn, Tensor.randint, Tensor.normal, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform ] for method in creation_methods: with self.assertRaises(ValueError): method(-3, 2) with self.assertRaises(ValueError): method((2, -3)) with self.assertRaises(ValueError): method((2, -3, 0)) def test_negative_dims_full(self): with self.assertRaises(ValueError): Tensor.full((-3,), 2) with self.assertRaises(ValueError): Tensor.full((2, -3), 4) with self.assertRaises(ValueError): Tensor.full((2, -3, 0), 4) def test_negative_dims_eye(self): with self.assertRaises(ValueError): Tensor.eye(-3, 3) with self.assertRaises(ValueError): Tensor.eye(3, -3) with self.assertRaises(ValueError): Tensor.eye(-3, -3) def test_negative_dims_kaiming(self): creation_methods = [Tensor.kaiming_uniform, Tensor.kaiming_normal] for method in creation_methods: with self.assertRaises(ValueError): method(-3, 3) with self.assertRaises(ValueError): method((-3, 3), 3) with self.assertRaises(ValueError): method((-3, -3), 3) def test_zeros(self): helper_test_op([], lambda: torch.zeros(45,65), lambda: Tensor.zeros(45,65), forward_only=True) helper_test_op([], lambda: torch.zeros([45,65]), lambda: Tensor.zeros([45,65]), forward_only=True) helper_test_op([], lambda: torch.zeros([]), lambda: Tensor.zeros([]), forward_only=True) def test_zeros_like(self): a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.float32) b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.float32) helper_test_op([], lambda: torch.zeros_like(b), lambda: Tensor.zeros_like(a), forward_only=True) a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.int32) b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.int32) helper_test_op([], lambda: torch.zeros_like(b), lambda: Tensor.zeros_like(a), forward_only=True) def test_empty_0(self): helper_test_op([], lambda: torch.empty(45,65)*0/0, lambda: Tensor.empty(45,65)*0/0, forward_only=True) def test_ones(self): helper_test_op([], lambda: torch.ones(45,65), lambda: Tensor.ones(45,65), forward_only=True) helper_test_op([], lambda: torch.ones([45,65]), lambda: Tensor.ones([45,65]), forward_only=True) helper_test_op([], lambda: torch.ones([]), lambda: Tensor.ones([]), forward_only=True) def test_ones_like(self): a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.float32) b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.float32) helper_test_op([], lambda: torch.ones_like(b), lambda: Tensor.ones_like(a), forward_only=True) a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.int32) b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.int32) helper_test_op([], lambda: torch.ones_like(b), lambda: Tensor.ones_like(a), forward_only=True) def test_eye(self): helper_test_op([], lambda: torch.eye(10), lambda: Tensor.eye(10), forward_only=True) helper_test_op([], lambda: torch.eye(3, 5), lambda: Tensor.eye(3, 5), forward_only=True) helper_test_op([], lambda: torch.eye(5, 3), lambda: Tensor.eye(5, 3), forward_only=True) helper_test_op([], lambda: torch.eye(1), lambda: Tensor.eye(1), forward_only=True) helper_test_op([], lambda: torch.eye(0), lambda: Tensor.eye(0), forward_only=True) def test_split(self): def tensor(s): return torch.arange(math.prod(s), dtype=torch.int32).reshape(s), Tensor.arange(math.prod(s)).reshape(s) test_cases = [ (tensor((10,)), 5, {}), (tensor((10,)), [1,4,5], {}), (tensor((10,)), 3, {}), (tensor((3,4,)), 1, {}), (tensor((3,4,)), 1, {'dim':1}), (tensor((4,4,)), [2,2], {}), (tensor((4,4,)), [2,2], {'dim':1}), (tensor((10000,)), 2500, {}), ] for (tor, ten), sizes, args in test_cases: tor_splits, ten_splits = tor.split(sizes, **args), ten.split(sizes, **args) assert len(tor_splits) == len(ten_splits) for tor_chunk, ten_chunk in zip(tor_splits, ten_splits): helper_test_op([], lambda: tor_chunk, lambda: ten_chunk, forward_only=True) def test_chunk(self): tor = torch.arange(13, dtype=torch.int32).repeat(8, 1).chunk(6, 1) ten = Tensor.arange(13).repeat((8, 1)).chunk(6, 1) assert len(tor) == len(ten) for i in range(len(tor)): helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True) tor = torch.arange(13, dtype=torch.int32).repeat(8, 1).chunk(6, 0) ten = Tensor.arange(13).repeat((8, 1)).chunk(6, 0) assert len(tor) == len(ten) for i in range(len(tor)): helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True) tor = torch.arange(13, dtype=torch.int32).repeat(8, 1).chunk(3, -1) ten = Tensor.arange(13).repeat((8, 1)).chunk(3, -1) assert len(tor) == len(ten) for i in range(len(tor)): helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True) tor = torch.arange(13, dtype=torch.int32).repeat(8, 3, 3).chunk(3, -2) ten = Tensor.arange(13).repeat((8, 3, 3)).chunk(3, -2) assert len(tor) == len(ten) for i in range(len(tor)): helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True) def test_arange(self): helper_test_op([], lambda: torch.arange(10, dtype=torch.int32), lambda: Tensor.arange(10), forward_only=True) helper_test_op([], lambda: torch.arange(36, dtype=torch.int32), lambda: Tensor.arange(36), forward_only=True) helper_test_op([], lambda: torch.arange(5, 10, 3, dtype=torch.int32), lambda: Tensor.arange(5, 10, 3), forward_only=True) helper_test_op([], lambda: torch.arange(10, 5, -3, dtype=torch.int32), lambda: Tensor.arange(10, 5, -3), forward_only=True) helper_test_op([], lambda: torch.arange(11, 5, -3, dtype=torch.int32), lambda: Tensor.arange(11, 5, -3), forward_only=True) helper_test_op([], lambda: torch.arange(1, 78, 2, dtype=torch.int32), lambda: Tensor.arange(1, 78, 2), forward_only=True) helper_test_op([], lambda: torch.arange(5.5, 175.5, 2.5), lambda: Tensor.arange(5.5, 175.5, 2.5), forward_only=True) helper_test_op([], lambda: torch.arange(-30.2, -0.3, 0.75), lambda: Tensor.arange(-30.2, -0.3, 0.75), forward_only=True) helper_test_op([], lambda: torch.arange(-50.3, -380.2, -2.25), lambda: Tensor.arange(-50.3, -380.2, -2.25), forward_only=True) def test_arange_big(self): helper_test_op([], lambda: torch.arange(256, dtype=torch.int32), lambda: Tensor.arange(256), forward_only=True) def test_arange_4096(self): helper_test_op([], lambda: torch.arange(4096, dtype=torch.int32), lambda: Tensor.arange(4096), forward_only=True) def test_sum_fake(self): helper_test_op([(256, 1)], lambda x: x.sum(axis=1)) def test_sum_collapse(self): helper_test_op([], lambda: torch.ones(256,256).sum(axis=1), lambda: Tensor.ones(256,256).sum(axis=1), forward_only=True) def test_sum_collapse_neg(self): helper_test_op([], lambda: (-torch.ones(3,3)).sum(axis=1), lambda: (-Tensor.ones(3,3)).sum(axis=1), forward_only=True) def test_sum_pad_collapse(self): helper_test_op([], lambda: torch.nn.functional.pad(torch.ones(256,256), pad=(0,64,0,0)).sum(axis=1), lambda: Tensor.ones(256,256).pad(((0,0), (0,64))).sum(axis=1), forward_only=True) # this is more complex and won't fold for a while def test_sum_cat_collapse(self): helper_test_op([], lambda: torch.cat([torch.ones(256,256), torch.zeros(256,64)], dim=1).sum(axis=1), lambda: Tensor.cat(Tensor.ones(256,256), Tensor.zeros(256,64), dim=1).sum(axis=1), forward_only=True) def test_max_dont_collapse(self): helper_test_op([], lambda: torch.ones(256,256).max(1)[0], lambda: Tensor.ones(256,256).max(1), forward_only=True) def test_where(self): helper_test_op( [(100,)], lambda x: torch.where(x > 0.5, 4, 2).type(torch.int32), lambda x: (x > 0.5).where(4, 2), forward_only=True) for shps in [[(8,),(1,),(1,)], [(10,10),(10,),(10,)], [(100,)]*3, [(10,10)]*3]: helper_test_op( shps, lambda x, a, b: torch.where(x > 0.5, a, b), lambda x, a, b: (x > 0.5).where(a, b), forward_only=True) def test_where_permute(self): helper_test_op( [(5, 5)], lambda x: torch.where(x > 0.5, 4, 2).type(torch.int32).permute((1, 0)), lambda x: (x > 0.5).where(4, 2).permute((1, 0)), forward_only=True) def _test_cmp(self, fxn, reverse=True): # test different dtypes helper_test_op(None, fxn, fxn, forward_only=True, vals=[[0.,1,2], [2.,1,0]]) helper_test_op(None, fxn, fxn, forward_only=True, vals=[[0,1,2], [2,1,0]]) helper_test_op(None, fxn, fxn, forward_only=True, vals=[[True, True, False], [False,True,False]]) # test broadcasting for shps in [[(3, 4, 5), (3, 4, 5)], [(3, 4, 5), (5,)], [(5,), (3, 4, 5)]]: helper_test_op(shps, fxn, fxn, forward_only=True) # test cmp with const helper_test_op(None, lambda x,y: fxn(x,2), lambda x,y: fxn(x,2), forward_only=True, vals=[[0.,1,2], [2.,1,0]]) if reverse: helper_test_op(None, lambda x,y: fxn(2,y), lambda x,y: fxn(2,y), forward_only=True, vals=[[0.,1,2], [2.,1,0]]) # test special floats # TODO: fix nan specials = [0.0, 1.0, -1.0, math.inf, -math.inf]#, math.nan] for s0 in specials: for s1 in specials: helper_test_op(None, fxn, fxn, forward_only=True, vals=[[s0], [s1]]) def test_cmp_eq(self): self._test_cmp(lambda x,y: x==y, reverse=False) def test_cmp_gt(self): self._test_cmp(lambda x,y: x>y) def test_cmp_ge(self): self._test_cmp(lambda x,y: x>=y) def test_cmp_lt(self): self._test_cmp(lambda x,y: x> 0, lambda: (ten >> 0).cast(dtypes.int32), forward_only=True) helper_test_op([], lambda: tor >> 2, lambda: (ten >> 2).cast(dtypes.int32), forward_only=True) helper_test_op([], lambda: tor >> 31, lambda: (ten >> 31).cast(dtypes.int32), forward_only=True) helper_test_op([], lambda: tor.__rshift__(2), lambda: ten.__rshift__(2).cast(dtypes.int32), forward_only=True) helper_test_op([], lambda: tor.bitwise_right_shift(2), lambda: ten.rshift(2).cast(dtypes.int32), forward_only=True) def test_sin(self): helper_test_op([(45,65)], lambda x: x.sin()) helper_test_op([()], lambda x: x.sin()) # works on real CUDA but not CI if not (getenv("MOCKGPU") and Device.DEFAULT == "NV"): helper_test_op(None, lambda x: x.sin(), vals=[[math.nan, math.inf, -math.inf]]) helper_test_op(None, lambda x: x.sin(), vals=[[1e1, 1e2, 1e3, 1e4, 1e5, 1e6, -1e1, -1e2, -1e3, -1e4, -1e5, -1e6]], atol=3e-3, rtol=3e-3, grad_atol=3e-3, grad_rtol=3e-3) def test_cos(self): helper_test_op([(45,65)], lambda x: x.cos()) helper_test_op([()], lambda x: x.cos()) if not (getenv("MOCKGPU") and Device.DEFAULT == "NV"): helper_test_op(None, lambda x: x.cos(), vals=[[1e1, 1e2, 1e3, 1e4, 1e5, 1e6, -1e1, -1e2, -1e3, -1e4, -1e5, -1e6]], atol=3e-3, rtol=3e-3, grad_atol=3e-3, grad_rtol=3e-3) def test_tan(self): # NOTE: backward has much higher diff with input close to pi/2 and -pi/2 helper_test_op([(45,65)], lambda x: x.tan(), low=-1.5, high=1.5) helper_test_op([(45,65)], lambda x: x.tan(), low=-5, high=5, forward_only=True) helper_test_op([()], lambda x: x.tan()) if not (getenv("MOCKGPU") and Device.DEFAULT == "NV"): helper_test_op(None, lambda x: x.cos(), vals=[[1e1, 1e2, 1e3, 1e4, 1e5, 1e6, -1e1, -1e2, -1e3, -1e4, -1e5, -1e6]], atol=3e-3, rtol=3e-3, grad_atol=3e-3, grad_rtol=3e-3) def test_relu(self): helper_test_op([(64,64)], lambda x: x.relu()) helper_test_op([()], lambda x: x.relu()) def test_relu_exact(self): helper_test_op(None, lambda x: x.relu(), vals=[[-1.,0,1]]) def test_relu_maximum_exact(self): helper_test_op(None, lambda x: torch.maximum(x, torch.zeros_like(x, requires_grad=False)), lambda x: Tensor.maximum(x, 0), vals=[[-1.,0,1]]) def test_leakyrelu(self): helper_test_op([(45,65)], lambda x: torch.nn.functional.leaky_relu(x,0.01), Tensor.leakyrelu) helper_test_op([()], lambda x: torch.nn.functional.leaky_relu(x,0.01), Tensor.leakyrelu) def test_celu(self): for val in range(1, 5): helper_test_op([(45,65)], lambda x: torch.nn.functional.celu(x,val), lambda x: x.celu(val)) helper_test_op([()], lambda x: torch.nn.functional.celu(x,val), lambda x: x.celu(val)) def test_abs(self): helper_test_op([(45,65)], torch.abs, Tensor.abs) helper_test_op([()], torch.abs, Tensor.abs) def test_abs_exact(self): helper_test_op(None, torch.abs, Tensor.abs, vals=[[-1.,0,1]]) def test_log(self): helper_test_op([(45,65)], torch.log, Tensor.log) helper_test_op([()], torch.log, Tensor.log) def test_log2(self): helper_test_op([(45,65)], torch.log2, Tensor.log2) helper_test_op([()], torch.log2, Tensor.log2) def test_exp(self): helper_test_op([(45,65)], torch.exp, Tensor.exp) helper_test_op([()], torch.exp, Tensor.exp) def test_exp2(self): helper_test_op([(45,65)], torch.exp2, Tensor.exp2) helper_test_op([()], torch.exp2, Tensor.exp2) def test_sign(self): helper_test_op([(45,65)], torch.sign, Tensor.sign) helper_test_op([()], torch.sign, Tensor.sign) def test_sign_exact(self): helper_test_op(None, torch.sign, Tensor.sign, vals=[[-1.,0,1]]) def test_softsign(self): helper_test_op([(45,65)], torch.nn.functional.softsign, Tensor.softsign) helper_test_op([()], torch.nn.functional.softsign, Tensor.softsign) def test_softsign_exact(self): helper_test_op(None, torch.nn.functional.softsign, Tensor.softsign, vals=[[-1.,0,1]]) def test_sigmoid(self): helper_test_op([(45,65)], torch.sigmoid, Tensor.sigmoid) helper_test_op([(45,65)], torch.sigmoid, Tensor.sigmoid, low=300, high=400) helper_test_op([(45,65)], torch.sigmoid, Tensor.sigmoid, low=-400, high=-300) helper_test_op([()], torch.sigmoid, Tensor.sigmoid) def test_softplus(self): helper_test_op([(45,65)], torch.nn.functional.softplus, Tensor.softplus, grad_atol=1e-6) helper_test_op([()], torch.nn.functional.softplus, Tensor.softplus, grad_atol=1e-6) def test_gelu(self): helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu) helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu, low=300, high=400) helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu, low=-400, high=-300) def test_quick_gelu(self): helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu) helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu, low=300, high=400) helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu, low=-400, high=-300) helper_test_op([()], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu) def test_elu(self): helper_test_op([(45,65)], torch.nn.functional.elu, Tensor.elu) helper_test_op([(45,65)], lambda x: torch.nn.functional.elu(x, alpha=0.1), lambda x: Tensor.elu(x, alpha=0.1)) helper_test_op([()], torch.nn.functional.elu, Tensor.elu) def test_relu6(self): helper_test_op([(45,65)], torch.nn.functional.relu6, Tensor.relu6) helper_test_op([()], torch.nn.functional.relu6, Tensor.relu6) def test_hardswish(self): helper_test_op([(45,65)], torch.nn.functional.hardswish, Tensor.hardswish, grad_atol=1e-6) helper_test_op([()], torch.nn.functional.hardswish, Tensor.hardswish, grad_atol=1e-6) def test_mish(self): helper_test_op([(45,65)], torch.nn.functional.mish, Tensor.mish) helper_test_op([()], torch.nn.functional.mish, Tensor.mish) def test_multinomial(self): # NOTE: this is random, so it has a very large atol helper_test_op([(1000,)], lambda x: torch.multinomial(x.clip(0,1), num_samples=1).type(torch.int32), lambda x: Tensor.multinomial(x.clip(0,1)), forward_only=True, atol=1000.) def test_small_cumsum(self): helper_test_op([(10)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) def test_simple_cumsum(self): helper_test_op([(512)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) helper_test_op([(1022)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) def test_cumsum(self): helper_test_op([()], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) self.helper_test_exception([()], lambda x: torch.cumsum(x, dim=1), lambda x: Tensor.cumsum(x, axis=1), expected=IndexError) helper_test_op([(20,)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) self.helper_test_exception([(20,)], lambda x: torch.cumsum(x, dim=1), lambda x: Tensor.cumsum(x, axis=1), expected=IndexError) self.helper_test_exception([(20,)], lambda x: torch.cumsum(x, dim=-2), lambda x: Tensor.cumsum(x, axis=-2), expected=IndexError) helper_test_op([(20,30)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) helper_test_op([(20,30)], lambda x: torch.cumsum(x, dim=1), lambda x: Tensor.cumsum(x, axis=1)) helper_test_op([(20,30,40)], lambda x: torch.cumsum(x, dim=2), lambda x: Tensor.cumsum(x, axis=2)) helper_test_op([(20,30,40)], lambda x: torch.cumsum(x, dim=-1), lambda x: Tensor.cumsum(x, axis=-1)) def test_cumsum_zero_axis(self): helper_test_op([(2,0,4)], lambda x: torch.cumsum(x, dim=1), lambda x: Tensor.cumsum(x, axis=1)) helper_test_op([(0,3)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0)) helper_test_op([(2,3,0)], lambda x: torch.cumsum(x, dim=2), lambda x: Tensor.cumsum(x, axis=2)) def test_argmax(self): # check if it returns the first index for multiple occurences self.assertEqual(torch.tensor([2,2]).argmax().numpy(), Tensor([2,2]).argmax().numpy()) np.testing.assert_equal(Tensor([2,2]).argmax().numpy(), np.array(0)) np.testing.assert_equal(Tensor([1,2,2]).argmax().numpy(), np.array(1)) helper_test_op([(10,20)], lambda x: x.argmax().type(torch.int32), lambda x: x.argmax(), forward_only=True) helper_test_op([(10,20)], lambda x: x.argmax(0, False).type(torch.int32), lambda x: x.argmax(0, False), forward_only=True) helper_test_op([(10,20)], lambda x: x.argmax(1, False).type(torch.int32), lambda x: x.argmax(1, False), forward_only=True) helper_test_op([(10,20)], lambda x: x.argmax(1, True).type(torch.int32), lambda x: x.argmax(1, True), forward_only=True) def test_argmin(self): # check if it returns the first index for multiple occurences self.assertEqual(torch.tensor([2, 2]).argmin().numpy(), Tensor([2, 2]).argmin().numpy()) np.testing.assert_equal(Tensor([2,2]).argmin().numpy(), np.array(0)) np.testing.assert_equal(Tensor([3,2,2]).argmin().numpy(), np.array(1)) helper_test_op([(10,20)], lambda x: x.argmin().type(torch.int32), lambda x: x.argmin(), forward_only=True) helper_test_op([(10,20)], lambda x: x.argmin(0, False).type(torch.int32), lambda x: x.argmin(0, False), forward_only=True) helper_test_op([(10,20)], lambda x: x.argmin(1, False).type(torch.int32), lambda x: x.argmin(1, False), forward_only=True) helper_test_op([(10,20)], lambda x: x.argmin(1, True).type(torch.int32), lambda x: x.argmin(1, True), forward_only=True) def test_einsum(self): # matrix transpose helper_test_op([(150,150)], lambda a: torch.einsum('ij->ji', a), lambda a: Tensor.einsum('ij->ji', a)) helper_test_op([(150,150)], lambda a: torch.einsum('ij -> ji', a), lambda a: Tensor.einsum('ij -> ji', a)) helper_test_op([(150,150)], lambda a: torch.einsum('ji', a), lambda a: Tensor.einsum('ji', a)) helper_test_op([(20,30,40)], lambda a: torch.einsum('jki', a), lambda a: Tensor.einsum('jki', a)) helper_test_op([(20,30,40)], lambda a: torch.einsum('dog', a), lambda a: Tensor.einsum('dog', a)) # no -> and empty rhs helper_test_op([(20,30),(30,40)], lambda a, b: torch.einsum('ij,jk', a, b), lambda a, b: Tensor.einsum('ij,jk', a, b)) # sum all elements helper_test_op([(20,30,40)], lambda a: torch.einsum('ijk->', a), lambda a: Tensor.einsum('ijk->', a)) # column sum helper_test_op([(50,50)], lambda a: torch.einsum('ij->j', a), lambda a: Tensor.einsum('ij->j', a)) # row sum helper_test_op([(15,15)], lambda a: torch.einsum('ij->i', a), lambda a: Tensor.einsum('ij->i', a)) # matrix-vector multiplication helper_test_op([(15,20), (20,)], lambda a,b: torch.einsum('ik,k->i', a,b), lambda a,b: Tensor.einsum('ik,k->i', a, b)) # matrix-matrix multiplication helper_test_op([(15,20), (20,30)], lambda a,b: torch.einsum('ik,kj->ij', a,b), lambda a,b: Tensor.einsum('ik,kj->ij', a, b)) # matrix-matrix multiplication, different letter order helper_test_op([(15,20), (20,30)], lambda a,b: torch.einsum('jk,ki->ji', a,b), lambda a,b: Tensor.einsum('jk,ki->ji', a, b)) # dot product helper_test_op([(30),(30)], lambda a,b: torch.einsum('i,i->i', [a,b]), lambda a,b: Tensor.einsum('i,i->i', [a,b])) # hadamard product helper_test_op([(30,40),(30,40)], lambda a,b: torch.einsum('ij,ij->ij', a,b), lambda a,b: Tensor.einsum('ij,ij->ij', a,b)) # outer product helper_test_op([(15,), (15,)], lambda a,b: torch.einsum('i,j->ij', a,b), lambda a,b: Tensor.einsum('i,j->ij',a,b)) # batch matrix multiplication helper_test_op([(10,20,30),(10,30,40)], lambda a,b: torch.einsum('ijk,ikl->ijl', [a, b]), lambda a,b: Tensor.einsum('ijk,ikl->ijl', [a, b])) # batch matrix multiplication, result permuted helper_test_op([(10,20,25),(10,25,32)], lambda a,b: torch.einsum('ijk,ikl->jil', [a, b]), lambda a,b: Tensor.einsum('ijk,ikl->jil', [a, b])) # batch matrix multiplication, result & input permuted helper_test_op([(20,10,25),(10,25,32)], lambda a,b: torch.einsum('jik,ikl->jil', [a, b]), lambda a,b: Tensor.einsum('jik,ikl->jil', [a, b])) # batch matrix multiplication, result with different letters helper_test_op([(10,20,30),(10,30,40)], lambda a,b: torch.einsum('ijk,ika->ija', [a, b]), lambda a,b: Tensor.einsum('ijk,ika->ija', [a, b])) # tensor contraction helper_test_op([(3,5,8,10),(11,13,5,16,8)], lambda a,b: torch.einsum('pqrs,tuqvr->pstuv', a,b), lambda a,b: Tensor.einsum('pqrs,tuqvr->pstuv', a,b), atol=1e-5) # tensor contraction, input permuted helper_test_op([(3,8,10,5),(11,5,13,16,8)], lambda a,b: torch.einsum('prsq,tquvr->pstuv', a,b), lambda a,b: Tensor.einsum('prsq,tquvr->pstuv', a,b), atol=1e-5) # tensor contraction, result with different letters helper_test_op([(3,5,8,10),(11,13,5,16,8)], lambda a,b: torch.einsum('zqrs,tuqvr->zstuv', a,b), lambda a,b: Tensor.einsum('zqrs,tuqvr->zstuv', a,b), atol=1e-5) # bilinear transformation helper_test_op([(2,3),(5,3,7),(2,7)], lambda a,b,c: torch.einsum('ik,jkl,il->ij', [a,b,c]), lambda a,b,c: Tensor.einsum('ik,jkl,il->ij', [a,b,c])) def test_einsum_ellipsis(self): """The expected behavior for einsum is described in the PyTorch docs: https://pytorch.org/docs/stable/generated/torch.einsum.html""" # test ellipsis helper_test_op([(3, 8, 9), (3, 8, 9)], lambda a, b: torch.einsum('...id, ...jd -> ...ij', [a, b]), lambda a, b: Tensor.einsum('...id, ...jd -> ...ij', [a, b])) # ellipsis will come first in the output before the subscript labels, if rhs is not specified helper_test_op([(3, 8, 9), (3, 8, 9)], lambda a, b: torch.einsum('...id, ...jd', [a, b]), lambda a, b: Tensor.einsum('...id, ...jd', [a, b])) # multiple ellipsis in different operands with different shapes are allowed helper_test_op([(2, 3, 4, 5), (5, 2, 4)], lambda a, b: torch.einsum('i...j,ji...->...', [a, b]), lambda a, b: Tensor.einsum('i...j,ji...->...', [a, b])) # match torch ellipsis handling helper_test_op([(32, 7, 24, 24, 24), (32, 7, 24, 24, 24)], lambda a, b: torch.einsum('ij...,ij...->ij', [a, b]), lambda a, b: Tensor.einsum('ij...,ij...->ij', [a, b])) # multiple ellipsis in one operand are not allowed. This test shall raise an exception. with self.assertRaises(RuntimeError): helper_test_op([(2, 3, 4), (2, 3, 4)], lambda a, b: torch.einsum('...ik..., ...jk ->', [a, b]), lambda a, b: Tensor.einsum('...ik..., ...jk ->', [a, b])) # multiple ellipsis must broadcast together. This test shall raise an exception. with self.assertRaises(RuntimeError): helper_test_op([(2, 3, 4, 5), (5, 2, 7)], lambda a, b: torch.einsum('i...j,ji...->...', [a, b]), lambda a, b: Tensor.einsum('i...j,ji...->...', [a, b])) def test_einsum_shape_check(self): a = Tensor.zeros(3,8,10,5) b = Tensor.zeros(11,5,13,16,8) with self.assertRaises(AssertionError): Tensor.einsum('pqrs,tuqvr->pstuv',a,b) def test_einsum_arity_check1(self): a = Tensor.zeros(10,15) b = Tensor.zeros(15,20) c = Tensor.zeros(20,10) with self.assertRaises(AssertionError): Tensor.einsum('ij,jk->ij', a,b,c) def test_einsum_arity_check2(self): a = Tensor.zeros(10,10) with self.assertRaises(AssertionError): Tensor.einsum('ij,jk->ij', a) @unittest.skipIf(IMAGE>0, "no 1d dot for images") def test_dot_1d(self): helper_test_op([(65), (65)], lambda x,y: x.matmul(y), Tensor.dot) helper_test_op([(65), (65,45)], lambda x,y: x.matmul(y), Tensor.dot) helper_test_op([(45,65), (65)], lambda x,y: x.matmul(y), Tensor.dot) helper_test_op([(8,45,65), (65)], lambda x,y: x.matmul(y), Tensor.dot) helper_test_op([(65), (8,65,45)], lambda x,y: x.matmul(y), Tensor.dot) self.helper_test_exception([(4), (1,2)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError)) self.helper_test_exception([(2,1), (4)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError)) self.helper_test_exception([(1), (4)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError)) def test_dot(self): helper_test_op([(45,65), (65,100)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-5) helper_test_op([(8,45,65), (8,65,100)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-5) self.helper_test_exception([(2, 4), (1, 3)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError)) self.helper_test_exception([(2, 1), (4, 3)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError)) with self.assertRaises(AssertionError): a = Tensor(3.14) a.matmul(a) def test_mulacc_with_zero_strides(self): helper_test_op( [], lambda: torch.tensor(1.0).reshape((1,1,1)).expand(2,4,3).mul(torch.tensor(1.0).reshape((1,1,1)).expand(2,4,3)).sum(-1), lambda: Tensor(1.0).reshape((1,1,1)).expand(2,4,3).mul(Tensor(1.0).reshape((1,1,1)).expand(2,4,3)).sum(-1), forward_only=True ) a = [[1.,1.,1.,1.], [1.,1.,1.,1.]] b = [1.,1.,1.,1.] helper_test_op( [], lambda: torch.tensor(a).reshape((2,4,1)).expand(2,4,3).mul(torch.tensor(b).reshape((1,4,1)).expand(2,4,3)).sum([0,2]), lambda: Tensor(a).reshape((2,4,1)).expand(2,4,3).mul(Tensor(b).reshape((1,4,1)).expand(2,4,3)).sum([0,2]), forward_only=True ) helper_test_op( [], lambda: torch.ones((1,2)).matmul(torch.ones((2,3))), lambda: Tensor.ones((1,2)).dot(Tensor.ones((2,3))), forward_only=True ) def test_matmul_simple(self): helper_test_op([(4), (4,4)], lambda x,y: x.matmul(y), Tensor.dot) def test_matmul(self): helper_test_op([(64), (64,99)], lambda x,y: x.matmul(y), Tensor.dot) @unittest.skipIf(IMAGE>0, "no batched matmul on images") def test_matmul_batched(self): helper_test_op([(3), (1,3,3,5)], lambda x,y: x.matmul(y), Tensor.dot) @unittest.skipIf(IMAGE>0, "no batched matmul on images") def test_matmul_batched_vector(self): helper_test_op([(4,3), (1,3,3,5)], lambda x,y: x.matmul(y), Tensor.dot) def test_small_gemm(self): helper_test_op([(8,8), (8,8)], lambda x,y: x.matmul(y), lambda x,y: x@y) def test_9_gemm(self): helper_test_op([(9,9), (9,9)], lambda x,y: x.matmul(y), lambda x,y: x@y) def test_small_gemm_padded(self): helper_test_op([(9,9), (9,9)], lambda x,y: torch.nn.functional.pad(x, (0,7,0,7)).matmul(torch.nn.functional.pad(y, (0,7,0,7))), lambda x,y: x.pad(((0,7),(0,7)))@y.pad(((0,7),(0,7)))) def test_small_gemm_range(self): helper_test_op(None, lambda x,y: x.matmul(y), lambda x,y: x@y, vals=[np.arange(0,64,dtype=np.float32).reshape(8,8), np.arange(64,128,dtype=np.float32).reshape(8,8)]) def test_small_gemm_eye(self): helper_test_op(None, lambda x,y: x.matmul(y), lambda x,y: x@y, vals=[np.eye(8).astype(np.float32), np.eye(8).astype(np.float32)]) @unittest.skipIf(CI and Device.DEFAULT in ["NV", "LLVM", "GPU", "CUDA"], "not supported on these in CI") def test_gemm_fp16(self): helper_test_op([(64,64), (64,64)], lambda x,y: x.half().matmul(y.half()), atol=5e-3, rtol=5e-3) def test_gemm(self): helper_test_op([(64,64), (64,64)], lambda x,y: x.matmul(y)) def test_big_gemm(self): helper_test_op([(256,256), (256,256)], lambda x,y: x.matmul(y), atol=1e-4) @unittest.skipIf(IMAGE>0, "no 0 in shape matmul on images") def test_gemm_with_zeros_shape(self): helper_test_op([(8,8), (8,0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) helper_test_op([(0,8), (8,8)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) helper_test_op([(0,8), (8,0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) helper_test_op([(8,0), (0,8)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) helper_test_op([(0,0), (0,0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) helper_test_op([(0), (0,8)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) helper_test_op([(0), (0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7) def test_broadcastdot(self): helper_test_op([(10,45,65), (65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4) with self.assertRaises(AssertionError): a = Tensor(3.14) b = Tensor.ones(3,3) a @ b def test_multidot(self): helper_test_op([(10,45,65), (10,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4) helper_test_op([(3,3,45,65), (3,3,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4) def test_sum_simple(self): helper_test_op(None, lambda x: x.sum(), vals=[[1.,1.]]) # NOTE: simple test for locals # FORWARD_ONLY=1 DEBUG=4 python3 test/test_ops.py TestOps.test_sum_full def test_sum_full(self): helper_test_op([(16384)], lambda x: x.sum()) def test_sum_relu(self): helper_test_op([(3,4,5)], lambda x: x.relu().sum().relu()) def test_sum_tiny(self): helper_test_op([(4,2,2)], lambda x: x.sum(axis=(0,2))) def test_sum(self): helper_test_op([(45,3)], lambda x: x.sum()) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=3)) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,3))) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(0,2))) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,2))) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=1)) helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=1, keepdim=True)) helper_test_op([()], lambda x: x.sum()) helper_test_op([()], lambda x: x.sum(0)) helper_test_op([()], lambda x: x.sum(-1)) helper_test_op([()], lambda x: x.sum(())) self.helper_test_exception([(3,4,5,6)], lambda x: x.sum(5), lambda x: x.sum(5), expected=IndexError) self.helper_test_exception([()], lambda x: x.sum(1), lambda x: x.sum(1), expected=IndexError) self.helper_test_exception([()], lambda x: x.sum((1,)), lambda x: x.sum((1,)), expected=IndexError) def test_sum_with_zeros_shape(self): helper_test_op([(4, 0)], lambda x: x.sum(axis=(0,))) helper_test_op([(4, 0)], lambda x: x.sum(axis=(1,))) helper_test_op([(4, 0)], lambda x: x.sum(axis=(0,1))) def test_prod(self): helper_test_op(None, lambda x: x.prod(), vals=[[1.0, 2.0, 3.0]]) with Context(NOOPT=1): helper_test_op(None, lambda x: x.prod(), vals=[[1.0, 2.0, 3.0]]) helper_test_op([(3,4,5,6)], lambda x: x.prod(dim=3), lambda x: x.prod(axis=3)) helper_test_op([(3,4,5,6)], lambda x: x.prod(dim=1), lambda x: x.prod(axis=1)) helper_test_op([(3,4,5,6)], lambda x: x.prod(dim=1, keepdim=True), lambda x: x.prod(axis=1, keepdim=True)) helper_test_op([()], lambda x: x.prod()) helper_test_op([()], lambda x: x.prod(0)) helper_test_op([()], lambda x: x.prod(-1)) def test_min(self): helper_test_op([(3,3)], lambda x: x.min()) helper_test_op([(45,3)], lambda x: x.min()) helper_test_op([(45,3)], lambda x: x.min().mul(0.5)) helper_test_op([()], lambda x: x.min()) def test_max(self): helper_test_op([(45,3)], lambda x: x.max()) helper_test_op([(45,3)], lambda x: x.max().mul(0.5)) helper_test_op(None, lambda x: x.max().mul(0.5), vals=[[[1.0,1.0,0.0,1.0]],]) helper_test_op([(3,4,5,6)], lambda x: x.max(axis=1)[0], lambda x: x.max(axis=1)) helper_test_op([()], lambda x: x.max()) @unittest.skipIf(Device.DEFAULT == "QCOM", "OpenCL fails to compile this (both on GPU(qcom)/QCOM backends)") def test_any(self): helper_test_op([(3,4,5,6)], lambda x: x.any(), forward_only=True) helper_test_op(None, lambda x: x.any(), vals=[[True, True]], forward_only=True) helper_test_op(None, lambda x: x.any(), vals=[[True, False]], forward_only=True) helper_test_op(None, lambda x: x.any(), vals=[[False, False]], forward_only=True) helper_test_op([()], lambda x: x.any(), forward_only=True) def test_any_axis(self): helper_test_op([(3,4,5,6)], lambda x: x.any(axis=(1,2)), forward_only=True) def test_any_zero_axis(self): helper_test_op([(1,0,3,0,5)], lambda x: x.any(axis=(1,3)), forward_only=True) @unittest.skipIf(Device.DEFAULT == "QCOM", "OpenCL fails to compile this (both on GPU(qcom)/QCOM backends)") def test_all(self): helper_test_op([(3,4,5,6)], lambda x: x.all(), forward_only=True) helper_test_op(None, lambda x: x.all(), vals=[[True, True]], forward_only=True) helper_test_op(None, lambda x: x.all(), vals=[[True, False]], forward_only=True) helper_test_op(None, lambda x: x.all(), vals=[[False, False]], forward_only=True) helper_test_op([()], lambda x: x.all(), forward_only=True) def test_all_axis(self): helper_test_op([(3,4,5,6)], lambda x: x.all(axis=(1,2)), forward_only=True) def test_all_zero_axis(self): helper_test_op([(1,0,3,0,5)], lambda x: x.all(axis=(1,3)), forward_only=True) def test_mean(self): helper_test_op([(3,4,5,6)], lambda x: x.mean()) helper_test_op([()], lambda x: x.mean()) def test_mean_axis(self): helper_test_op([(3,4,5,6)], lambda x: x.mean(axis=(1,2))) def test_mean_zero_axis(self): helper_test_op([(1,0,3,0,5)], lambda x: x.mean(axis=(1,3))) def test_var(self): helper_test_op([(15, 25, 35)], lambda x: x.var()) helper_test_op([(15, 25, 35)], lambda x: x.var(correction=0)) helper_test_op([(15, 25, 35)], lambda x: x.var(correction=5)) # TODO: fix this # helper_test_op([(10, 2)], lambda x: x.var(correction=50)) def test_var_axis(self): helper_test_op([(15, 25, 35)], lambda x: x.var(0)) helper_test_op([(15, 25, 35)], lambda x: x.var(2)) helper_test_op([(15, 25, 35)], lambda x: x.var([1, 2])) helper_test_op([(15, 25, 35)], lambda x: x.var(0, correction=0)) helper_test_op([(15, 25, 35)], lambda x: x.var(2, correction=0)) helper_test_op([(15, 25, 35)], lambda x: x.var([1, 2], correction=0)) def test_var_zero_in_axis(self): helper_test_op([(1,0,3,0,5)], lambda x: x.var(axis=(1,3))) helper_test_op([(1,0,3,0,5)], lambda x: x.var(axis=(1,3), correction=0)) helper_test_op([(1,0,3,0,5)], lambda x: x.var(axis=(1,3), correction=5)) # TODO: fix backward when correction >= n def test_var_one_in_axis(self): helper_test_op([(1,2,3,1,5)], lambda x: x.var(axis=(0,3)), forward_only=True) helper_test_op([(1,2,3,1,5)], lambda x: x.var(axis=(0,3), correction=0)) helper_test_op([(1,2,3,1,5)], lambda x: x.var(axis=(0,3), correction=5), forward_only=True) helper_test_op([(1,2,3,1,5)], lambda x: x.var(axis=(0,4))) helper_test_op([(1,2,3,1,5)], lambda x: x.var(axis=(0,4), correction=0)) helper_test_op([(1,2,3,1,5)], lambda x: x.var(axis=(0,4), correction=5), forward_only=True) def test_var_keepdim(self): helper_test_op([(15, 25, 35)], lambda x: x.var(keepdim=True)) helper_test_op([(15, 25, 35)], lambda x: x.var(0, keepdim=True, correction=0)) def test_std(self): helper_test_op([(15, 25, 35)], lambda x: x.std()) helper_test_op([(15, 25, 35)], lambda x: x.std(correction=0)) helper_test_op([(15, 25, 35)], lambda x: x.std(correction=5)) def test_std_axis(self): helper_test_op([(15, 25, 35)], lambda x: x.std(0)) helper_test_op([(15, 25, 35)], lambda x: x.std(2)) helper_test_op([(15, 25, 35)], lambda x: x.std([1, 2])) helper_test_op([(15, 25, 35)], lambda x: x.std(0, correction=0)) helper_test_op([(15, 25, 35)], lambda x: x.std(2, correction=0)) helper_test_op([(15, 25, 35)], lambda x: x.std([1, 2], correction=0)) def test_std_zero_in_axis(self): helper_test_op([(1,0,3,0,5)], lambda x: x.std(axis=(1,3))) helper_test_op([(1,0,3,0,5)], lambda x: x.std(axis=(1,3), correction=0)) helper_test_op([(1,0,3,0,5)], lambda x: x.std(axis=(1,3), correction=5)) # TODO: fix backward when correction >= n def test_std_one_in_axis(self): helper_test_op([(1,2,3,1,5)], lambda x: x.std(axis=(0,3)), forward_only=True) helper_test_op([(1,2,3,1,5)], lambda x: x.std(axis=(0,3), correction=0)) helper_test_op([(1,2,3,1,5)], lambda x: x.std(axis=(0,3), correction=5), forward_only=True) helper_test_op([(1,2,3,1,5)], lambda x: x.std(axis=(0,4))) helper_test_op([(1,2,3,1,5)], lambda x: x.std(axis=(0,4), correction=0)) helper_test_op([(1,2,3,1,5)], lambda x: x.std(axis=(0,4), correction=5)) def test_std_keepdim(self): helper_test_op([(15, 25, 35)], lambda x: x.std(keepdim=True)) helper_test_op([(15, 25, 35)], lambda x: x.std(0, keepdim=True, correction=0)) def test_std_mean(self): helper_test_op([(15,25,35)], lambda x: torch.stack(torch.std_mean(x)), lambda x: Tensor.stack(*x.std_mean())) helper_test_op([(15,25,35)], lambda x: torch.stack(torch.std_mean(x, correction=5)), lambda x: Tensor.stack(*x.std_mean(correction=5))) helper_test_op([(15,25,35)], lambda x: torch.stack(torch.std_mean(x, keepdim=True, correction=0)), lambda x: Tensor.stack(*x.std_mean(keepdim=True, correction=0))) helper_test_op([(1,0,3,0,5)], lambda x: torch.stack(torch.std_mean(x, axis=(1,3))), lambda x: Tensor.stack(*x.std_mean(axis=(1,3)))) helper_test_op([(3,4,5,6)], lambda x: torch.stack(torch.std_mean(x, axis=(1,2))), lambda x: Tensor.stack(*x.std_mean(axis=(1,2)))) def test_softmax(self): # exceed per kernel buffer limit with backward forward_only = (Device.DEFAULT == "WEBGPU") helper_test_op([(45,65)], torch.nn.Softmax(dim=1), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only) helper_test_op([(45)], torch.nn.Softmax(dim=0), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only) helper_test_op([()], torch.nn.Softmax(dim=0), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only) helper_test_op([()], torch.nn.Softmax(dim=-1), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only) def test_softmax_other_axis(self): helper_test_op([(10,10,10)], lambda x: x.softmax(0), atol=1e-7, grad_atol=1e-7) helper_test_op([(10,10,10)], lambda x: x.softmax(1), atol=1e-7, grad_atol=1e-7) helper_test_op([(10,10,10)], lambda x: x.softmax(2), atol=1e-7, grad_atol=1e-7) def test_softmax_argmax(self): helper_test_op([(45,65)], lambda x: x.softmax(0).argmax().type(torch.int32), lambda x: x.softmax(0).argmax(), forward_only=True, atol=1e-7, grad_atol=1e-7) helper_test_op([(45,65)], lambda x: x.softmax(1).argmax().type(torch.int32), lambda x: x.softmax(1).argmax(), forward_only=True, atol=1e-7, grad_atol=1e-7) def test_log_softmax(self): helper_test_op([(45,65)], torch.nn.LogSoftmax(dim=1), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7) helper_test_op([(45)], torch.nn.LogSoftmax(dim=0), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7) helper_test_op([()], torch.nn.LogSoftmax(dim=0), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7) helper_test_op([()], torch.nn.LogSoftmax(dim=-1), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7) def test_log_softmax_other_axis(self): helper_test_op([(10,10,10)], lambda x: x.log_softmax(0), atol=1e-7, grad_atol=1e-7) helper_test_op([(10,10,10)], lambda x: x.log_softmax(1), atol=1e-7, grad_atol=1e-7) helper_test_op([(10,10,10)], lambda x: x.log_softmax(2), atol=1e-7, grad_atol=1e-7) def test_logsumexp(self): helper_test_op([(45,65)], lambda x: torch.logsumexp(x, dim=0), lambda x: x.logsumexp(0), atol=1e-7, grad_atol=1e-7) helper_test_op([(45,65)], lambda x: torch.logsumexp(x, dim=0, keepdim=True), lambda x: x.logsumexp(0, True), atol=1e-7, grad_atol=1e-7) helper_test_op([(45,65)], lambda x: torch.logsumexp(x, dim=1), lambda x: x.logsumexp(1), atol=1e-7, grad_atol=1e-7) helper_test_op([(45)], lambda x: torch.logsumexp(x, dim=0), lambda x: x.logsumexp(0), atol=1e-7, grad_atol=1e-7) helper_test_op([()], lambda x: torch.logsumexp(x, dim=0), lambda x: x.logsumexp(0), atol=1e-7, grad_atol=1e-7) helper_test_op([()], lambda x: torch.logsumexp(x, dim=-1), lambda x: x.logsumexp(-1), atol=1e-7, grad_atol=1e-7) def test_logcumsumexp(self): helper_test_op([(45,65)], lambda x: torch.logcumsumexp(x, dim=0), lambda x: x.logcumsumexp(0), atol=1e-7, grad_atol=1e-7) helper_test_op([(45,65)], lambda x: torch.logcumsumexp(x, dim=1), lambda x: x.logcumsumexp(1), atol=1e-7, grad_atol=1e-7) helper_test_op([(45)], lambda x: torch.logcumsumexp(x, dim=0), lambda x: x.logcumsumexp(0), atol=1e-7, grad_atol=1e-7) helper_test_op([()], lambda x: torch.logcumsumexp(x, dim=0), lambda x: x.logcumsumexp(0), atol=1e-7, grad_atol=1e-7) helper_test_op([()], lambda x: torch.logcumsumexp(x, dim=0), lambda x: x.logcumsumexp(), atol=1e-7, grad_atol=1e-7) helper_test_op([()], lambda x: torch.logcumsumexp(x, dim=-1), lambda x: x.logcumsumexp(-1), atol=1e-7, grad_atol=1e-7) @unittest.expectedFailure # TODO: fix numerical instability def test_logcumsumexp_numerical(self): helper_test_op(None, lambda x: torch.logcumsumexp(x, dim=0), lambda x: x.logcumsumexp(), atol=1e-7, grad_atol=1e-7, vals=[[0.0, 100.0]]) def test_sinh(self): helper_test_op([(45,65)], lambda x: x.sinh(), grad_atol=1e-6) # TODO: backward nan instead of inf helper_test_op([(45,65)], lambda x: x.sinh(), grad_atol=1e-6, low=-300, high=-297, forward_only=True) helper_test_op([(45,65)], lambda x: x.sinh(), grad_atol=1e-6, low=300, high=303, forward_only=True) def test_cosh(self): helper_test_op([(45,65)], lambda x: x.cosh(), grad_atol=1e-6) # TODO: backward nan instead of inf helper_test_op([(45,65)], lambda x: x.cosh(), grad_atol=1e-6, low=-300, high=-297, forward_only=True) helper_test_op([(45,65)], lambda x: x.cosh(), grad_atol=1e-6, low=300, high=303, forward_only=True) def test_tanh(self): helper_test_op([(45,65)], lambda x: x.tanh(), grad_atol=1e-6) helper_test_op([(45,65)], lambda x: x.tanh(), grad_atol=1e-6, low=-300, high=-297) helper_test_op([(45,65)], lambda x: x.tanh(), grad_atol=1e-6, low=300, high=303) def test_hardtanh(self): for val in range(10, 30, 5): helper_test_op([(45,65)], lambda x: torch.nn.functional.hardtanh(x, -val, val), lambda x: x.hardtanh(-val, val), grad_atol=1e-6) helper_test_op([()], lambda x: torch.nn.functional.hardtanh(x, -val, val), lambda x: x.hardtanh(-val, val), grad_atol=1e-6) def test_asinh(self): helper_test_op([(45,65)], lambda x: x.asinh(), grad_atol=1e-6) # NOTE: this one has larger atol helper_test_op([(45,65)], lambda x: x.asinh(), atol=1e-2, grad_atol=1e-6, low=-300, high=-297) helper_test_op([(45,65)], lambda x: x.asinh(), grad_atol=1e-6, low=300, high=303) def test_acosh(self): helper_test_op([(45,65)], lambda x: x.acosh(), grad_atol=1e-6) helper_test_op([(45,65)], lambda x: x.acosh(), grad_atol=1e-6, low=-300, high=-297) helper_test_op([(45,65)], lambda x: x.acosh(), grad_atol=1e-6, low=300, high=303) def test_atanh(self): helper_test_op([(45,65)], lambda x: x.atanh(), grad_atol=1e-6) helper_test_op([(45,65)], lambda x: x.atanh(), grad_atol=1e-6, low=-300, high=-297) helper_test_op([(45,65)], lambda x: x.atanh(), grad_atol=1e-6, low=300, high=303) def test_topo_sort(self): helper_test_op([(45,65)], lambda x: (x+x)*x, grad_atol=1e-6) helper_test_op([()], lambda x: (x+x)*x, grad_atol=1e-6) def test_flip_eye_crash(self): helper_test_op([], lambda: (torch.eye(10)@torch.eye(10).flip(0)), lambda: (Tensor.eye(10)@Tensor.eye(10).flip(0)), forward_only=True) def test_broadcast_full(self): for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul), (torch.div, Tensor.div), (torch.pow, Tensor.pow)]: for shapes in [((5,13,24,16), (5,1,24,1)), ((1,3,1,7,1), (2,1,5,1,8))]: with self.subTest(op=torch_op.__name__, shapes=shapes): if tinygrad_op != Tensor.pow: helper_test_op(shapes, torch_op, tinygrad_op) else: helper_test_op(shapes, torch_op, tinygrad_op, low=0, high=3) def test_broadcast_simple(self): helper_test_op([(45,65), (45,1)], lambda x,y: x/y) helper_test_op([(45,65), ()], lambda x,y: x/y) def test_broadcast_partial(self): for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul), (torch.div, Tensor.div), (torch.pow, Tensor.pow)]: for shapes in [((1,32,32,32), (1,32,1,1)), ((5,13,24,16,2), (1,13,24,1,1)), ((4,1), (4,5)), ((1,4), (5,4))]: with self.subTest(op=torch_op.__name__, shapes=shapes): # NOTE: ANE backwards? if tinygrad_op != Tensor.pow: helper_test_op(shapes, torch_op, tinygrad_op) else: helper_test_op(shapes, torch_op, tinygrad_op, low=0, high=3) def test_slice_in_bounds_1dim(self): helper_test_op([(3)], lambda x: x[1:3]) helper_test_op([(3)], lambda x: x[0:2]) helper_test_op([(3)], lambda x: x[-2:2]) def test_slice_on_0dim_tensor(self): helper_test_op([()], lambda x: x[None]) with self.assertRaises(IndexError): a = Tensor(3.14) a[0] def test_slice_int_indexing(self): helper_test_op([(3)], lambda x: x[0]) helper_test_op([(3)], lambda x: x[2]) helper_test_op([(3)], lambda x: x[-1]) helper_test_op([(3)], lambda x: x[-3]) helper_test_op([(10,10)], lambda x: x[1]) helper_test_op([(3,3,3)], lambda x: x[1,1,1]) def test_slice_in_bounds_multidim(self): helper_test_op([(3,3,3)], lambda x: x[1:2]) helper_test_op([(3,3,3)], lambda x: x[1:2, 2]) helper_test_op([(3,3,3)], lambda x: x[1:2, 1:2]) helper_test_op([(3,3,3)], lambda x: x[1:2, 1:2, 0:-1]) def test_slice_with_none(self): helper_test_op([(3,3,3)], lambda x: x[None]) helper_test_op([(3,3,3)], lambda x: x[1:2, None]) helper_test_op([(3,3,3)], lambda x: x[1:2, None, 1:2]) helper_test_op([(3,3,3)], lambda x: x[1:2, 1:2, None, -1]) helper_test_op([(3,3,3)], lambda x: x[None, None, 1, None, 2, 0:2]) def test_slice_with_const_tensor(self): t = Tensor.zeros(1, dtype=dtypes.int) helper_test_op([(3,3,3)], lambda x: x[:, [0], :], lambda x: x[:, t, :]) helper_test_op([(3,3,3)], lambda x: x[:, [0], :], lambda x: x[:, t.contiguous(), :]) def test_slice_one_endpoint_out_of_bounds(self): helper_test_op([(3,3,3)], lambda x: x[0:4]) helper_test_op([(3,3,3)], lambda x: x[-6:4]) helper_test_op([(3,3,3)], lambda x: x[1:50]) helper_test_op([(3,3,3)], lambda x: x[1:50, 1:2, -1]) def test_slice_stride_gt_one(self): helper_test_op([(7,5,10)], lambda x: x[::2, ::3, ::4]) helper_test_op([(7,5,10)], lambda x: x[1:5:2, ::3, ::4]) helper_test_op([(7,5,10)], lambda x: x[1:5:2, 3, ::4]) helper_test_op([(7,5,10)], lambda x: x[1:5:2, None, None, 3, None, ::4]) def test_slice_negative_strides(self): # Torch doesn't support slicing with negative steps a = np.random.randn(10, 10, 10).astype(np.float32) t = Tensor(a) np.testing.assert_allclose(a[::-1], t[::-1].numpy()) np.testing.assert_allclose(a[::-2], t[::-2].numpy()) np.testing.assert_allclose(a[:, 2:0:-1], t[:, 2:0:-1].numpy()) np.testing.assert_allclose(a[:, 2:0:-1, 3:1:-2], t[:, 2:0:-1, 3:1:-2].numpy()) np.testing.assert_allclose(a[4:0:-3, 2:0:-1, -1:-5:-2], t[4:0:-3, 2:0:-1, -1:-5:-2].numpy()) np.testing.assert_allclose(a[2:5:-1, :, :], t[2:5:-1, :, :].numpy()) # shape = (0, 10, 10) np.testing.assert_allclose(a[:, 2:5:-1, :], t[:, 2:5:-1, :].numpy()) # shape = (0, 10, 10) np.testing.assert_allclose(a[:, :, 2:5:-1], t[:, :, 2:5:-1].numpy()) # shape = (0, 10, 10) def test_slice_both_endpoints_out_of_bounds(self): helper_test_op([(3,3,3)], lambda x: x[5:10]) helper_test_op([(3,3,3)], lambda x: x[-15:-7]) def test_slice_start_gt_end(self): helper_test_op([(3,3,3)], lambda x: x[-2:2]) helper_test_op([(3,3,3)], lambda x: x[-2:-5]) def test_slice_empty(self): helper_test_op([(10,10)], lambda x: x[1:1]) def test_slice_zero_in_shape(self): helper_test_op([(10,10)], lambda x: x[1:1]) # x.shape = (0, 10) helper_test_op([(3,3,3)], lambda x: x[-2:-5]) # x.shape = (0, 3, 3) def test_slice_errors(self): a = Tensor.ones(4, 3) b = Tensor(2) with self.assertRaisesRegex(IndexError, "too many"): a[1, 77, 77, 77] # IndexError: (finds too many indices before the out of bounds) with self.assertRaisesRegex(IndexError, "out of bounds"): a[1, 3] # IndexError: (out of bounds). with self.assertRaisesRegex(IndexError, "out of bounds"): a[1, -4] with self.assertRaisesRegex(IndexError, "single ellipsis"): a[..., ...] # IndexError: only single ellipsis with self.assertRaises(ValueError): a[::0, 1] # no 0 strides with self.assertRaises(TypeError): a[:Tensor([3]), 1] # Tensor can't be used as a slice parameter with self.assertRaises(IndexError): b[:] # slice cannot be applied to a 0-dim tensor def test_slice_ellipsis(self): helper_test_op([(3,3,3,3)], lambda x: x[..., 0]) helper_test_op([(3,3,3,3)], lambda x: x[0, ...]) helper_test_op([(3,3,3,3)], lambda x: x[0, ..., 0]) helper_test_op([(3,3,3,3)], lambda x: x[0:3, ..., 2:3]) helper_test_op([(3,3,3,3)], lambda x: x[None, 0:3, ..., 0, None]) # this was the failure in llama early realizing freqs_cis def test_double_slice(self): helper_test_op([(4,4)], lambda x: x[:, 1:2][1:2]) helper_test_op([(4,4)], lambda x: x[1:3][1:2]) helper_test_op([(4,4)], lambda x: x[:, 1:2][0:1]) helper_test_op([(4,4)], lambda x: x[:, 1:2][:, 0:1]) def test_pad2d(self): helper_test_op([(3,3,3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4)), lambda x: x.pad2d(padding=(1,2,3,4))) helper_test_op([(3,3,3,3)], lambda x: torch.nn.functional.pad(x, (-1,2,-3,4)), lambda x: x.pad2d(padding=(-1,2,-3,4))) helper_test_op([(3,3,3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4), value=5), lambda x: x.pad2d(padding=(1,2,3,4),value=5)) helper_test_op([(3,3,3,3)], lambda x: torch.nn.functional.pad(x, (-1,2,-3,4), value=5), lambda x: x.pad2d(padding=(-1,2,-3,4),value=5)) def test_pad(self): helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4)),lambda x: x.pad(((3,4),(1,2)))) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4), value=5), lambda x: x.pad(((3,4), (1,2)), value=5)) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4), value=math.inf), lambda x: x.pad(((3,4), (1,2)), value=math.inf)) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4), value=-math.inf), lambda x: x.pad(((3,4), (1,2)), value=-math.inf)) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x, (0,0,3,4), value=1), lambda x: x.pad(((3,4), None), value=1)) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x, (0,0,0,0), value=1), lambda x: x.pad((None, None), value=1)) def test_pad_reshape(self): helper_test_op([(1, 2)], lambda x: torch.nn.functional.pad(x, (0, 1, 1, 0)).reshape((3, 2)), lambda x: x.pad2d((0, 1, 1, 0)).reshape((3, 2)), forward_only=True) helper_test_op([(1, 2)], lambda x: torch.nn.functional.pad(x, (0, 2, 1, 1)).reshape((4, 3)), lambda x: x.pad2d((0, 2, 1, 1)).reshape((4, 3)), forward_only=True) helper_test_op([(1, 1, 1, 2)], lambda x: torch.nn.functional.pad(x, (0, 4, 2, 2, 1, 2, 0, 2)).reshape((4, 3, 6, 5)), lambda x: x.pad(((0, 2), (1, 2), (2, 2), (0, 4))).reshape((4, 3, 6, 5)), forward_only=True) @unittest.skipIf(Device.DEFAULT == "WEBGL", "incorrect result") def test_pad_slice(self): for value in 0., 3.456: helper_test_op([(1)], lambda x: torch.nn.functional.pad(x,(1,0), value=value)[0], lambda x: x.pad(((1,0),), value=value)[0]) helper_test_op([(4)], lambda x: torch.nn.functional.pad(x,(1,0), value=value)[0], lambda x: x.pad(((1,0),), value=value)[0]) helper_test_op([(4)], lambda x: torch.nn.functional.pad(x,(3,0), value=value)[0:1], lambda x: x.pad(((3,0),), value=value)[0:1]) helper_test_op([(4)], lambda x: torch.nn.functional.pad(x,(0,3), value=value)[6], lambda x: x.pad(((0,3),), value=value)[6]) helper_test_op([(4)], lambda x: torch.nn.functional.pad(x,(0,3), value=value)[4:6], lambda x: x.pad(((0,3),), value=value)[4:6]) helper_test_op([(5,5)], lambda x: torch.nn.functional.pad(x,(0,0,1,0), value=value)[0], lambda x: x.pad(((1,0),(0,0)), value=value)[0]) helper_test_op([(2,2)], lambda x: torch.nn.functional.pad(x,(0,1,0,0), value=value)[0,2], lambda x: x.pad(((0,0),(0,1)), value=value)[0,2]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(0,0,1,0), value=value)[0,2], lambda x: x.pad(((1,0),(0,0)), value=value)[0,2]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(0,0,0,2), value=value)[5], lambda x: x.pad(((0,2),(0,0)), value=value)[5]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(0,0,0,2), value=value)[3:5], lambda x: x.pad(((0,2),(0,0)), value=value)[3:5]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(3,0,0,0), value=value)[1,0], lambda x: x.pad(((0,0),(3,0)), value=value)[1,0]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(3,0,0,0), value=value)[1,0:4], lambda x: x.pad(((0,0),(3,0)), value=value)[1,0:4]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(3,4,1,2), value=value)[0], lambda x: x.pad(((1,2),(3,4)), value=value)[0]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(3,4,1,2), value=value)[:,1], lambda x: x.pad(((1,2),(3,4)), value=value)[:,1]) helper_test_op([(4,4)], lambda x: torch.nn.functional.pad(x,(3,4,1,2), value=value)[:,4], lambda x: x.pad(((1,2),(3,4)), value=value)[:,4]) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x,(0,3,0,0), value=value)[:,4:6], lambda x: x.pad(((0,0),(0,3)), value=value)[:,4:6]) helper_test_op([(3,3)], lambda x: torch.nn.functional.pad(x,(0,1,3,2), value=value)[0:2,:], lambda x: x.pad(((3,2),(0,1)), value=value)[0:2,:]) helper_test_op([(3,3,3)], lambda x: torch.nn.functional.pad(x,(1,1,0,1,3,2), value=value)[0:2,:,:], lambda x: x.pad(((3,2),(0,1),(1,1)), value=value)[0:2,:,:]) helper_test_op([(3,3,3)], lambda x: torch.nn.functional.pad(x,(1,1,0,1,3,2), value=value)[2:4,:,:], lambda x: x.pad(((3,2),(0,1),(1,1)), value=value)[2:4,:,:]) def test_stack_slice(self): helper_test_op([(4)], lambda x: torch.stack([x for i in range(3)])[0,:], lambda x: Tensor.stack(*[x for i in range(3)])[0,:]) helper_test_op([(5)], lambda x: torch.stack([x for i in range(3)])[0,0], lambda x: Tensor.stack(*[x for i in range(3)])[0,0]) helper_test_op([(4,4)], lambda x: torch.stack([x for i in range(4)])[3], lambda x: Tensor.stack(*[x for i in range(4)])[3]) def test_transpose(self): helper_test_op([(3,3)], lambda x: x.T) helper_test_op([(3,3,3)], lambda x: x.transpose(1,2)) helper_test_op([(3,3,3)], lambda x: x.transpose(0,2)) def test_permute(self): helper_test_op([(1,2,3,4)], lambda x: x.permute((3,0,2,1))) helper_test_op([(3,4,5,6)], lambda x: x.permute((3,2,1,0))) helper_test_op([(3,4,5,6)], lambda x: x.permute((-2,-1,1,0))) helper_test_op([()], lambda x: x.permute(())) self.helper_test_exception([(3,4,5,6)], lambda x: x.permute((0,2)), lambda x: x.permute((0,2)), expected=RuntimeError) self.helper_test_exception([(3,4,5,6)], lambda x: x.permute((0,1,2,3,3,3)), lambda x: x.permute((0,1,2,3,3,3)), expected=RuntimeError) self.helper_test_exception([(3,4,5,6)], lambda x: x.permute((0,0,1,2,3)), lambda x: x.permute((0,0,1,2,3)), expected=RuntimeError) def test_reshape(self): helper_test_op([(4,3,6,6)], lambda x: x.reshape((12,6,6))) helper_test_op([(4,3,6,6)], lambda x: x.reshape((-1,3,6,6))) helper_test_op([(4,3,6,6)], lambda x: x.reshape((-1,1,6,6))) helper_test_op([(4,3,6,6)], lambda x: x.reshape((4,3,6,6)), lambda x: x.reshape((None,None,6,6))) helper_test_op([()], lambda x: x.reshape(())) helper_test_op([(1,)], lambda x: x.reshape(())) helper_test_op([()], lambda x: x.reshape((1,))) helper_test_op([()], lambda x: x.reshape((1,1,1))) self.helper_test_exception([(3,4)], lambda x: x.reshape((-1,-1,2)), lambda x: x.reshape((-1,-1,2)), expected=RuntimeError) self.helper_test_exception([(3,4)], lambda x: x.reshape((-1,-1,-1,2)), lambda x: x.reshape((-1,-1,-1,2)), expected=RuntimeError) with self.assertRaises(ValueError): x = Tensor.ones((4,3,6,6)) x.reshape([]) def test_flip(self): helper_test_op([(4,3,6,6)], lambda x: x.flip((0,))) helper_test_op([(4,3,6,6)], lambda x: x.flip((0,1))) helper_test_op([(4,3,6,6)], lambda x: x.flip((0,1,3))) helper_test_op([(4,3,6,6)], lambda x: x.flip((3,))) helper_test_op([(4,3,6,6)], lambda x: x.flip((0,1,3)).flip(0)) helper_test_op([(4,3,6,6)], lambda x: x.flip((-1,))) helper_test_op([()], lambda x: x.flip(())) helper_test_op([(1,)], lambda x: x.flip(())) helper_test_op([(4,3,6,6)], lambda x: x.flip(())) self.helper_test_exception([(3,4)], lambda x: x.flip((0,0)), lambda x: x.flip((0,0)), expected=RuntimeError) self.helper_test_exception([(3,4)], lambda x: x.flip((1,1)), lambda x: x.flip((1,1)), expected=RuntimeError) self.helper_test_exception([(3,4)], lambda x: x.flip((1,-1)), lambda x: x.flip((1,-1)), expected=RuntimeError) def test_squeeze(self): helper_test_op([(1,3,6,6)], lambda x: x.squeeze(0)) helper_test_op([(4,3,1,6)], lambda x: x.squeeze(1)) helper_test_op([(4,3,6,6)], lambda x: x.squeeze(3)) self.helper_test_exception([(4,3,6,6)], lambda x: torch.squeeze(x, 50), lambda x: x.squeeze(dim=50), expected=IndexError) self.helper_test_exception([(4,3,6,6)], lambda x: torch.squeeze(x, -50), lambda x: x.squeeze(dim=-50), expected=IndexError) helper_test_op([(4,3,6,1)], lambda x: x.squeeze(-1)) helper_test_op([(4,3,6,6)], lambda x: x.squeeze()) helper_test_op([(1,3,6,6)], lambda x: x.squeeze()) helper_test_op([(2,3,1)], lambda x: x.squeeze()) helper_test_op([()], lambda x: x.squeeze(-1)) helper_test_op([()], lambda x: x.squeeze(0)) helper_test_op([()], lambda x: x.squeeze()) self.helper_test_exception([()], lambda x: torch.squeeze(x, 10), lambda x: x.squeeze(dim=10), expected=IndexError) self.helper_test_exception([()], lambda x: torch.squeeze(x, 1), lambda x: x.squeeze(dim=1), expected=IndexError) self.helper_test_exception([()], lambda x: torch.squeeze(x, -2), lambda x: x.squeeze(dim=-2), expected=IndexError) def test_unsqueeze(self): helper_test_op([(4,3,6,6)], lambda x: x.unsqueeze(0)) helper_test_op([(4,3,6,6)], lambda x: x.unsqueeze(4)) helper_test_op([(4,3,6,6)], lambda x: x.unsqueeze(-1)) helper_test_op([(4,3,6,6)], lambda x: x.unsqueeze(-3)) helper_test_op([()], lambda x: x.unsqueeze(0)) def test_flatten(self): for axis in range(3): helper_test_op([(4,3,6,6)], lambda x: x.flatten(start_dim=axis)) for axis in range(3): helper_test_op([(4,3,6,6)], lambda x: x.flatten(end_dim=axis)) helper_test_op([(4,3,6,6)], lambda x: x.flatten(start_dim=1, end_dim=3)) helper_test_op([()], lambda x: x.flatten()) helper_test_op([(1,)], lambda x: x.flatten()) def test_unflatten(self): helper_test_op([(4,3,6,6)], lambda x: x.unflatten(0, (2, 2))) helper_test_op([(4,3,6,6)], lambda x: x.unflatten(3, (3, 2))) helper_test_op([(4,3,6,6)], lambda x: x.unflatten(-1, (3, 2, 1))) def test_roll(self): helper_test_op([(2, 4)], lambda x: torch.roll(x, 1, 0), lambda x: x.roll(1, 0)) helper_test_op([(2, 4)], lambda x: torch.roll(x, -1, 0), lambda x: x.roll(-1, 0)) helper_test_op([(2, 4)], lambda x: torch.roll(x, shifts=(2, 1), dims=(0, 1)), lambda x: x.roll(shifts=(2, 1), dims=(0, 1))) helper_test_op([(2, 4, 6)], lambda x: torch.roll(x, 1, 0), lambda x: x.roll(1, 0)) helper_test_op([(2, 4)], lambda x: torch.roll(x, 1, -1), lambda x: x.roll(1, -1)) helper_test_op([(2, 4)], lambda x: torch.roll(x, -1, -1), lambda x: x.roll(-1, -1)) helper_test_op([(2, 4)], lambda x: torch.roll(x, 5, 0), lambda x: x.roll(5, 0)) helper_test_op([(2, 4)], lambda x: torch.roll(x, -5, 0), lambda x: x.roll(-5, 0)) helper_test_op([(2, 4, 6)], lambda x: torch.roll(x, shifts=(2, -3), dims=(0, 2)), lambda x: x.roll(shifts=(2, -3), dims=(0, 2))) helper_test_op([(2, 4, 6)], lambda x: torch.roll(x, shifts=(1, 2, -1), dims=(0, 1, 2)), lambda x: x.roll(shifts=(1, 2, -1), dims=(0, 1, 2))) helper_test_op([(2, 4)], lambda x: torch.roll(x, 0, 0), lambda x: x.roll(0, 0)) helper_test_op([(2, 4, 6)], lambda x: torch.roll(x, shifts=(0, 0), dims=(0, 1)), lambda x: x.roll(shifts=(0, 0), dims=(0, 1))) helper_test_op([(2, 4, 6)], lambda x: torch.roll(x, shifts=(0, 2), dims=(0, 1)), lambda x: x.roll(shifts=(0, 2), dims=(0, 1))) def test_detach(self): helper_test_op([(4,3,6,6)], lambda x: x.detach(), forward_only=True) helper_test_op([()], lambda x: x.detach(), forward_only=True) def test_expand(self): helper_test_op([(4,3,1,6)], lambda x: x.expand((4,3,2,6))) helper_test_op([(1,1,1,1)], lambda x: x.expand((4,3,2,6))) helper_test_op([(4,3,1,6)], lambda x: x.expand((6,1,4,3,2,6))) helper_test_op([(4,3,1,6)], lambda x: x.expand((0,1,4,3,2,6))) helper_test_op([(4,3,1,6)], lambda x: x.expand((4,3,0,6))) helper_test_op([()], lambda x: x.expand((4,3,2,6))) helper_test_op([()], lambda x: x.expand([])) with self.assertRaises((ValueError, RuntimeError)): Tensor.ones(4,3,1,6).expand(4,1,1,6) with self.assertRaises((ValueError, RuntimeError)): Tensor.ones(4,3,1,6).expand(4,6,1,6) with self.assertRaises((ValueError, RuntimeError)): Tensor.ones(4,3,1,6).expand(3,1,6) with self.assertRaises((ValueError, RuntimeError)): Tensor.ones(4,3,2,6).expand(4,3,0,6) @unittest.skip("very slow") def test_sd_big_conv(self): # internal shape (1, 1, 512, 62, 62, 512, 3, 3) overflows a int helper_test_op([(1,256,64,64), (512,256,3,3)], lambda x,w: torch.nn.functional.conv2d(x, w), lambda x,w: x.conv2d(w), atol=1e-3) @unittest.skip("slow") def test_large_bs_conv(self): # large batch size can cause OpenCL image to exceed max image height on macOS # (or cause the conv kernel to overflow short sampling coords) helper_test_op([(4096,3,3,3), (1,3,3,3)], lambda x,w: torch.nn.functional.conv2d(x, w), lambda x,w: x.conv2d(w), atol=1e-3) @unittest.skip("slow") def test_large_ic_conv(self): # large input channel count can cause OpenCL image to exceed max image width on macOS helper_test_op([(1,2048,3,3), (1,2048,3,3)], lambda x,w: torch.nn.functional.conv2d(x, w), lambda x,w: x.conv2d(w)) def test_biased_conv2d(self): C = 8 helper_test_op([(1,C,5,5), (C,C,1,1), (C,)], lambda x,w,b: torch.nn.functional.conv2d(torch.nn.functional.conv2d(x,w,b).relu(),w,b), lambda x,w,b: Tensor.conv2d(x,w,b).relu().conv2d(w,b)) def test_simple_conv2d(self): helper_test_op([(1,4,9,9), (4,4,3,3)], lambda x,w: torch.nn.functional.conv2d(x,w).relu(), lambda x,w: Tensor.conv2d(x,w).relu(), grad_rtol=1e-5) @unittest.skipIf(IMAGE>0, "no conv3d on images") def test_simple_conv3d(self): helper_test_op([(1,4,9,9,9), (4,4,3,3,3)], lambda x,w: torch.nn.functional.conv3d(x,w).relu(), lambda x,w: Tensor.conv2d(x,w).relu(), grad_rtol=1e-5) @unittest.skipIf(IMAGE>0, "no conv3d on images") def test_padded_conv3d(self): helper_test_op([(1,4,5,5,5), (4,4,3,3,3)], lambda x,w: torch.nn.functional.conv3d(x,w,padding=1).relu(), lambda x,w: Tensor.conv2d(x,w,padding=[1,1,1,1,1,1]).relu(), grad_rtol=1e-5) def test_simple_conv2d_m4(self): helper_test_op([(1,16,18,18), (16,16,3,3)], lambda x,w: torch.nn.functional.conv2d(x,w).relu(), lambda x,w: Tensor.conv2d(x,w).relu(), grad_rtol=1e-5) def test_simple_conv2d_1x1(self): helper_test_op([(1,4,9,9), (4,4,1,1)], lambda x,w: torch.nn.functional.conv2d(x,w).relu(), lambda x,w: Tensor.conv2d(x,w).relu(), grad_rtol=1e-5) def test_simple_conv2d_1x1_m4(self): helper_test_op([(1,16,32,32), (16,16,1,1)], lambda x,w: torch.nn.functional.conv2d(x,w).relu(), lambda x,w: Tensor.conv2d(x,w).relu(), grad_rtol=1e-5) def test_nested_conv2d(self): helper_test_op([(1,32,9,9), (32,32,3,3), (32,32,3,3)], lambda x,w1,w2: torch.nn.functional.conv2d(torch.nn.functional.conv2d(x,w1).relu(), w2).relu(), lambda x,w1,w2: x.conv2d(w1).relu().conv2d(w2).relu()) # expect reduce nodes == 3 def test_simple_conv2d_nhwc(self): # weights (from tf): filter_height x filter_width x in_channels x out_channels helper_test_op([(2,9,9,10), (3,3,10,20)], lambda x,w: torch.nn.functional.conv2d(x.permute(0,3,1,2),w.permute(3,2,0,1)).relu(), lambda x,w: Tensor.conv2d(x.permute(0,3,1,2),w.permute(3,2,0,1)).relu(), atol=1e-5, grad_rtol=1e-5) def test_simple_conv2d_batched(self): helper_test_op([(2,4,9,9), (4,4,3,3)], lambda x,w: torch.nn.functional.conv2d(x,w).relu(), lambda x,w: Tensor.conv2d(x,w).relu(), grad_rtol=1e-5) # conv transpose def test_simple_conv_transpose2d(self): helper_test_op([(2,4,9,9), (4,4,3,3)], lambda x,w: torch.nn.functional.conv_transpose2d(x,w).relu(), lambda x,w: Tensor.conv_transpose2d(x,w).relu(), grad_rtol=1e-5) def test_bias_conv_transpose2d(self): helper_test_op([(2,4,9,9), (4,4,3,3), (4,)], lambda x,w,b: torch.nn.functional.conv_transpose2d(x,w,b).relu(), lambda x,w,b: Tensor.conv_transpose2d(x,w,b).relu(), grad_rtol=1e-5) def test_grouped_conv_transpose2d(self): helper_test_op([(2,4,9,9), (4,4,3,3)], lambda x,w: torch.nn.functional.conv_transpose2d(x,w,groups=2).relu(), lambda x,w: Tensor.conv_transpose2d(x,w,groups=2).relu(), grad_rtol=1e-5) def test_padded_conv_transpose2d(self): for padding in [(1,2), (2,1), 2, 1, 0]: helper_test_op([(2,4,9,9), (4,4,3,3)], lambda x,w: torch.nn.functional.conv_transpose2d(x,w,padding=padding).relu(), lambda x,w: Tensor.conv_transpose2d(x,w,padding=padding).relu(), grad_rtol=1e-5) def test_dilated_conv_transpose2d(self): for dilation in [(1,2), (2,1), 2, 1]: helper_test_op([(2,4,9,9), (4,4,3,3)], lambda x,w: torch.nn.functional.conv_transpose2d(x,w,dilation=dilation).relu(), lambda x,w: Tensor.conv_transpose2d(x,w,dilation=dilation).relu(), grad_rtol=1e-5) def test_strided_conv_transpose2d(self): for stride in [(2,1), (1,2), 1]: helper_test_op([(2,4,4,5), (4,4,3,3)], lambda x,w: torch.nn.functional.conv_transpose2d(x,w, stride=stride).relu(), lambda x,w: Tensor.conv_transpose2d(x,w,stride=stride).relu(), grad_rtol=1e-5) def test_output_padded_conv_transpose2d(self): for output_padding, stride in [((1,1), (2,3)), ((2,1), (3,2))]: helper_test_op([(2,4,6,5), (4,4,3,3),(4,)], lambda x,w,b: torch.nn.functional.conv_transpose2d(x,w,b,output_padding=output_padding,stride=stride).relu(), lambda x,w,b: Tensor.conv_transpose2d(x,w,b,output_padding=output_padding,stride=stride).relu(), grad_rtol=1e-5) @unittest.skipIf(IMAGE>0, "no conv3d on images") def test_simple_conv_transpose3d(self): helper_test_op([(2,4,9,9,9), (4,4,3,3,3)], lambda x,w: torch.nn.functional.conv_transpose3d(x,w).relu(), lambda x,w: Tensor.conv_transpose2d(x,w).relu(), grad_rtol=1e-5) @unittest.skipIf((IMAGE>0), "no conv1d on images") def test_conv1d(self): for bs in [1,8]: for cin in [1,3]: for H in [1,2,5]: for groups in [1,3] if cin == 3 and H == 5 else [1]: with self.subTest(batch_size=bs, channels=cin, groups=groups, height=H): helper_test_op([(bs,cin,11), (6,cin//groups,H)], lambda x,w: torch.nn.functional.conv1d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) @unittest.skipIf(IMAGE>0, "no conv1d on images") def test_simple_padding_conv1d(self): bs = 6 cin = 2 groups = 1 H = 5 p = (1,1) helper_test_op([(bs,cin,11), (6,cin//groups,H)], lambda x,w: torch.nn.functional.conv1d(torch.nn.functional.pad(x, p),w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=p).relu()) @unittest.skipIf(IMAGE>0, "no conv1d on images") def test_strided_conv1d_simple(self): bs, H = 2, 3 helper_test_op([(bs,1,5), (1,1,H)], lambda x,w: torch.nn.functional.conv1d(x,w,stride=2).relu(), lambda x,w: Tensor.conv2d(x,w,stride=2).relu()) @unittest.skipIf(IMAGE>0, "no conv1d on images") def test_asymmetric_padding_conv1d(self): for p in [(0,1), (2,1), (2,0)]: with self.subTest(p): for n in [3,4]: for k in [2]: helper_test_op([(1,1,n), (1,1,k)], lambda x,w: torch.nn.functional.conv1d(torch.nn.functional.pad(x, p),w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=p).relu()) helper_test_op([(1,1,n), (1,1,k)], lambda x,w: torch.nn.functional.conv1d(torch.nn.functional.pad(x, p),w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=p).relu()) def _test_conv2d(self, bs=1, cin=1): for H in [1,2,3]: for W in [1,2,3,5]: for groups in [1,3] if cin == 3 and H == 3 and W == 3 else [1]: with self.subTest(batch_size=bs, channels=cin, groups=groups, height=H, width=W): helper_test_op([(bs,cin,11,7), (6,cin//groups,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) def test_conv2d(self): self._test_conv2d(bs=1, cin=3) def test_conv2d_bs_4_cin_3(self): self._test_conv2d(bs=4, cin=3) def test_conv2d_bs_1_cin_1(self): self._test_conv2d(bs=1, cin=1) def test_conv2d_bs_4_cin_1(self): self._test_conv2d(bs=4, cin=1) def test_large_input_conv2d(self): bs = 4 cin = 16 groups = 1 H = 5 W = 2 helper_test_op([(bs,cin,64,64), (6,cin//groups,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), # needed to relax tolerance on NVIDIA lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5) def test_simple_grouped_conv2d(self): bs = 1 groups = 2 rcout = 1 cin = 2 helper_test_op([(bs,groups*cin,1,1), (groups*rcout,cin,1,1)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) def test_medium_grouped_conv2d(self): bs = 1 groups = 2 rcout = 2 cin = 2 helper_test_op([(bs,groups*cin,1,1), (groups*rcout,cin,1,1)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) def test_depthwise_conv2d(self): bs = 1 groups = 32 rcout = 1 cin = 1 helper_test_op([(bs,groups*cin,32,32), (groups*rcout,cin,1,1)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) def test_grouped_conv2d(self): bs = 4 groups = 5 rcout = 7 cin = 3 helper_test_op([(bs,groups*cin,5,5), (groups*rcout,cin,3,3)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) def test_fancy_conv2d(self): bs = 2 cin = 3 cout = 1 groups = 3 H,W = 3,3 helper_test_op([(bs,cin,11,28), (groups*cout,cin//groups,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(), lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), grad_rtol=1e-5) def test_strided_conv2d_simple(self): bs,H,W = 2,3,1 helper_test_op([(bs,1,5,1), (1,1,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,stride=2).relu(), lambda x,w: Tensor.conv2d(x,w,stride=2).relu()) def test_strided_conv2d(self): bs = 4 cin = 3 H,W = 3,3 with self.subTest(stride := 2): helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,stride=2).relu(), lambda x,w: Tensor.conv2d(x,w,stride=stride).relu()) with self.subTest(stride := (2,1)): helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,stride=stride).relu(), lambda x,w: Tensor.conv2d(x,w,stride=(2,1)).relu()) def test_negative_padding_conv2d(self): n,k = 10, 3 helper_test_op([(1,1,n,n), (1,1,k,k)], lambda x,w: torch.nn.functional.conv2d(x[:, :, 1:-1, 1:-1],w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=-1).relu()) helper_test_op([(1,1,n,n), (1,1,k,k)], lambda x,w: torch.nn.functional.conv2d(x[:, :, 1:, 1:],w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=(-1,0,-1,0)).relu()) def test_simple_padding_conv2d(self): p = (1,1,1,1) helper_test_op(None, lambda x,w: torch.nn.functional.conv2d(torch.nn.functional.pad(x, p),w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=p).relu(), vals=[[[[[2.,3.]]]], [[[[1.]]]]]) def test_asymmetric_padding_conv2d(self): for p in [(0,1,0,1), (2,1,2,1), (2,0,2,1)]: with self.subTest(p): for n in [3,4]: for k in [2]: helper_test_op([(1,1,n,n), (1,1,k,k)], lambda x,w: torch.nn.functional.conv2d(torch.nn.functional.pad(x, p),w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=p).relu()) helper_test_op([(1,1,n,n), (1,1,k,k)], lambda x,w: torch.nn.functional.conv2d(torch.nn.functional.pad(x, p),w).relu(), lambda x,w: Tensor.conv2d(x,w,padding=p).relu()) def test_padded_conv2d_p21(self): bs,cin,H,W,padding = 4, 3, 3, 3, (2,1) helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,padding=padding).relu(), lambda x,w: Tensor.conv2d(x,w,padding=padding).relu()) def test_padded_conv2d_p22(self): bs,cin,H,W,padding = 4, 3, 3, 3, (2,2) helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,padding=padding).relu(), lambda x,w: Tensor.conv2d(x,w,padding=padding).relu()) def test_padded_conv2d_1x1(self): bs,cin,H,W,padding = 4, 3, 1, 1, 2 helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,padding=padding).relu(), lambda x,w: Tensor.conv2d(x,w,padding=padding).relu()) def test_padded_conv2d_bs1(self): bs,cin,H,W,padding = 1, 3, 3, 3, 1 helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,padding=padding).relu(), lambda x,w: Tensor.conv2d(x,w,padding=padding).relu()) def test_padding_add(self): helper_test_op([(64,64), (60,60)], lambda x,w: x+torch.nn.functional.pad(w, (2,2,2,2)), lambda x,w: x+w.pad2d((2,2,2,2))) def test_dilated_conv2d(self): bs = 4 cin = 3 H,W = 3,3 for d in [2, (2,1)]: with self.subTest(dilation := d): helper_test_op([(bs,cin,11,28), (4,cin,H,W)], lambda x,w: torch.nn.functional.conv2d(x,w,dilation=dilation).relu(), lambda x,w: Tensor.conv2d(x,w,dilation=dilation).relu()) def test_maxpool2d_simple(self): ksz = (2,2) helper_test_op([(1,1,2,3)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=ksz), lambda x: Tensor.max_pool2d(x, kernel_size=ksz)) def test_maxpool2d(self): for ksz in [(2,2), (3,3), 2, 3, (3,2), (5,5), (5,1)]: with self.subTest(kernel_size=ksz): helper_test_op([(32,2,110,28)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=ksz), lambda x: Tensor.max_pool2d(x, kernel_size=ksz)) def test_maxpool2d_padding(self): for ksz in [(2,2), (3,3), 2, 3, (3,2)]: with self.subTest(kernel_size=ksz): helper_test_op([(32,2,110,28)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=ksz, padding=1), lambda x: Tensor.max_pool2d(x, kernel_size=ksz, padding=1)) def test_maxpool2d_bigger_stride(self): for stride in [(2,3), (3,2), 2, 3]: with self.subTest(stride=stride): helper_test_op([(32,2,110,28)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(2,2), stride=stride), lambda x: Tensor.max_pool2d(x, kernel_size=(2,2), stride=stride)) def test_maxpool2d_bigger_stride_dilation(self): for stride, dilation in zip([(2,3), (3,2), 2, 3, 4], [(3,2), (2,3), 2, 3, 6]): with self.subTest(stride=stride): helper_test_op([(32,2,110,28)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(2,2), stride=stride, dilation=dilation), lambda x: Tensor.max_pool2d(x, kernel_size=(2,2), stride=stride, dilation=dilation)) @unittest.skipIf( Device.DEFAULT in {"CUDA", "NV"}, "CUDA fails on this") def test_maxpool2d_unit_stride(self): helper_test_op([(8, 2, 17, 14)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(5,5), stride=1), lambda x: Tensor.max_pool2d(x, kernel_size=(5,5), stride=1)) def test_maxpool2d_smaller_stride(self): for stride in [(2,3), (3,2), 2, 3]: with self.subTest(stride=stride): helper_test_op([(8, 2, 17, 14)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(5,5), stride=stride), lambda x: Tensor.max_pool2d(x, kernel_size=(5,5), stride=stride)) def test_maxpool2d_dilation(self): for dilation in [(2, 3), (3, 2), 2, 3]: helper_test_op([(8, 2, 17, 14)], lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(5,5), dilation=dilation), lambda x: Tensor.max_pool2d(x, kernel_size=(5,5), dilation=dilation)) def test_avgpool2d(self): shape = (32,2,111,28) for ksz in [(2,2), (3,3), (3,2), (5,5), (5,1)]: with self.subTest(kernel_size=ksz): helper_test_op([shape], lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=ksz), lambda x: Tensor.avg_pool2d(x, kernel_size=ksz), rtol=1e-5) def test_avgpool2d_padding(self): shape = (32,2,111,28) for ksz in [(2,2), (3,3), 2, 3, (3,2)]: with self.subTest(kernel_size=ksz): helper_test_op([shape], lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=ksz, padding=1), lambda x: Tensor.avg_pool2d(x, kernel_size=ksz, padding=1), rtol=1e-5) def test_avgpool2d_padding_not_counted(self): shape = (32,2,111,28) for ksz in [(2,2), (3,3), 2, 3, (3,2)]: with self.subTest(kernel_size=ksz): helper_test_op([shape], lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=ksz, padding=1, count_include_pad=False), lambda x: Tensor.avg_pool2d(x, kernel_size=ksz, padding=1, count_include_pad=False), rtol=1e-5) def test_global_avgpool2d(self): helper_test_op([(32,2,111,28)], lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=(111,28)), lambda x: Tensor.avg_pool2d(x, kernel_size=(111,28)), rtol=1e-5) def test_interpolate_linear(self): for in_sz, out_sz in [((52,),(29,)), ((29,),(52,))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode="linear"), lambda x: Tensor.interpolate(x, size=out_sz, mode="linear")) def test_interpolate_linear_corners_aligned(self): for in_sz, out_sz in [((52,),(29,)), ((29,),(52,))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode="linear", align_corners=True), lambda x: Tensor.interpolate(x, size=out_sz, mode="linear", align_corners=True)) def test_interpolate_nearest(self, mode="nearest"): for in_sz, out_sz in [((13,),(9,)), ((9,),(13,))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode=mode), lambda x: Tensor.interpolate(x, size=out_sz, mode=mode)) for in_sz, out_sz in [((13,10),(9,11)), ((13,9),(11,10)), ((9,11),(10,13))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode=mode), lambda x: Tensor.interpolate(x, size=out_sz, mode=mode)) for in_sz, out_sz in [((5,2,8),(3,6,4))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode=mode), lambda x: Tensor.interpolate(x, size=out_sz, mode=mode)) def test_interpolate_nearest_exact(self): self.test_interpolate_nearest("nearest-exact") def test_interpolate_bilinear(self): for in_sz, out_sz in [((52,40),(29,31)), ((52,29),(31,40)), ((29,31),(40,52))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode="bilinear"), lambda x: Tensor.interpolate(x, size=out_sz, mode="linear"), atol=1e-4) def test_interpolate_bilinear_corners_aligned(self): for in_sz, out_sz in [((52,40),(29,31)), ((52,29),(31,40)), ((29,31),(40,52))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode="bilinear", align_corners=True), lambda x: Tensor.interpolate(x, size=out_sz, mode="linear", align_corners=True), atol=1e-4) def test_interpolate_trilinear(self): for in_sz, out_sz in [((5,2,8),(3,6,4))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode="trilinear"), lambda x: Tensor.interpolate(x, size=out_sz, mode="linear"), atol=1e-4) def test_interpolate_trilinear_corners_aligned(self): for in_sz, out_sz in [((5,2,8),(3,6,4))]: helper_test_op([(2,3)+in_sz], lambda x: torch.nn.functional.interpolate(x, size=out_sz, mode="trilinear", align_corners=True), lambda x: Tensor.interpolate(x, size=out_sz, mode="linear", align_corners=True), atol=1e-4) def test_cat(self): for dim in range(-2, 3): helper_test_op([(45,65,9), (45,65,9), (45,65,9)], lambda x,y,z: torch.cat((x,y,z), dim), lambda x,y,z: x.cat(y, z, dim=dim)) # zero in non-cat axis helper_test_op([(45,0,9), (45,0,9), (45,0,9)], lambda x,y,z: torch.cat((x,y,z), 0), lambda x,y,z: x.cat(y, z, dim=0)) # zero in cat axis helper_test_op([(45,0,9), (45,1,9), (45,2,9)], lambda x,y,z: torch.cat((x,y,z), 1), lambda x,y,z: x.cat(y, z, dim=1)) helper_test_op([(45,0,9), (45,0,9), (45,0,9)], lambda x,y,z: torch.cat((x,y,z), 1), lambda x,y,z: x.cat(y, z, dim=1)) with self.assertRaises(IndexError): a = Tensor(3.14) a.cat(a) def test_multicat(self): for dim in range(-1, 2): helper_test_op([(45,65), (45,65), (45,65)], lambda x,y,z: torch.cat((x,y,z), dim), lambda x,y,z: x.cat(y, z, dim=dim)) def test_stack(self): for dim in range(-1, 3): helper_test_op([(45,65,3), (45,65,3), (45,65,3)], lambda x, y, z: torch.stack((x, y, z), dim), lambda x, y, z: Tensor.stack(x, y, z, dim=dim)) with self.assertRaises(IndexError): Tensor.stack(Tensor.randn(45, 65, 3), dim=77) a = Tensor(3.14) np.testing.assert_allclose(Tensor.stack(a, a).numpy(), Tensor([3.14, 3.14]).numpy()) def test_repeat(self): x = Tensor.randn(4, 6, 3) base_repeats = [2, 4, 3] for reps in [[], [4], [2, 1], [3, 2, 2]]: repeats = base_repeats + reps helper_test_op([(4, 6, 3)], lambda x: x.repeat(*repeats), lambda x: x.repeat(repeats)) helper_test_op([()], lambda x: x.repeat(*repeats), lambda x: x.repeat(repeats)) with self.assertRaises(ValueError): x.repeat((2, 4)) np.testing.assert_allclose(x.repeat((2, 0, 4)).numpy(), Tensor.zeros(8, 0, 12).numpy()) def test_repeat_interleave(self): helper_test_op([(3, 3)], lambda x: x.repeat_interleave(6)) helper_test_op([(3, 3)], lambda x: x.repeat_interleave(2, 1)) helper_test_op([(3, 3)], lambda x: x.repeat_interleave(2, 0)) def test_simple_repeat(self): repeats = [3, 3, 4] helper_test_op([(3, 3)], lambda x: x.repeat(*repeats), lambda x: x.repeat(repeats)) def test_clip(self): helper_test_op([(45,65)], lambda x: x.clip(-2.3, 1.2)) helper_test_op([(45,65)], lambda x: x.clip(0, 0)) helper_test_op([(45,65)], lambda x: x.clip(10, 100)) helper_test_op([(45,65)], lambda x: x.clip(0, 0.1)) helper_test_op([(45,65)], lambda x: x.clip(-0.3, -0.2)) helper_test_op([(45,65)], lambda x: x.clip(3, 0)) # min > max helper_test_op([(45,65)], lambda x: x.clip(None, 0)) helper_test_op([(45,65)], lambda x: x.clip(0, None)) self.helper_test_exception([(45,65)], lambda x: x.clip(None, None), lambda x: x.clip(None, None), RuntimeError) def test_matvecmat(self): helper_test_op([(1,128), (128,128), (128,128)], lambda x,y,z: (x@y).relu()@z) def test_matvec(self): helper_test_op([(1,128), (128,128)], lambda x,y: (x@y).relu()) @unittest.skip("this test is broken #862") def test_max_inf(self): n = Tensor([1, float("nan")]).max().numpy() assert math.isnan(n.item()), f"{n.item()} is not nan" def test_inf_where(self): x = Tensor.full((3, 3), float("inf")) n = (x < 0).where(x, 1).numpy() assert np.all(n == 1.) def _get_index_randoms(self): # indices cannot have gradient a = torch.randint(low=-1, high=1, size=(2,1,1,1,1,1), dtype=torch.int64, requires_grad=False) b = torch.randint(high=1, size=(1,3,1,1,1,1), dtype=torch.int64, requires_grad=False) c = torch.randint(low=-5, high=5, size=(1,1,4,1,1,1), dtype=torch.int64, requires_grad=False) d = torch.randint(high=4, size=(2,1,1,5,1,1), dtype=torch.int64, requires_grad=False) e = torch.randint(high=1, size=(1,1,1,1,6,1), dtype=torch.int64, requires_grad=False) i, j, k, o, p = [Tensor(tor.detach().numpy().astype(np.int32), requires_grad=False) for tor in [a,b,c,d,e]] return a,b,c,d,e,i,j,k,o,p def test_slice_fancy_indexing_no_dim_collapse(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() # no dim collapse from int or dim injection from None helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,d,e], lambda x: x[i,j,k,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[:,b,c,d,:], lambda x: x[:,j,k,o,:]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,...], lambda x: x[i,j,...]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,...,e], lambda x: x[i,...,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[...,c,:,e], lambda x: x[...,k,:,p]) def test_slice_fancy_indexing_dim_collapse_int(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() # dim collapse from int helper_test_op([(2,5,6,5,3,4)], lambda x: x[1,b,c,d,e], lambda x: x[1,j,k,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,3,d,e], lambda x: x[i,j,3,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[1,b,2,d,2], lambda x: x[1,j,2,o,2]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,2,2,2,e], lambda x: x[i,2,2,2,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[1,:,3:11:2,d,0:2], lambda x: x[1,:,3:11:2,o,0:2]) def test_slice_fancy_indexing_dim_inject_none(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() # dim injection from None helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,b,c,d,e], lambda x: x[None,j,k,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,d,None], lambda x: x[i,j,k,o,None]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,None,d,e], lambda x: x[i,j,None,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,b,c,d,None], lambda x: x[None,j,k,o,None]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,:,None,d,e], lambda x: x[i,:,None,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,None,None,None,None], lambda x: x[None,None,None,None,None]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,None,b,c,d,e], lambda x: x[None,None,j,k,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,None,b,c,None,None], lambda x: x[None,None,j,k,None,None]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,None,None,c,d,e], lambda x: x[i,None,None,k,o,p]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,None,None,c,None,None], lambda x: x[i,None,None,k,None,None]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,None,b,None,d,e], lambda x: x[None,None,j,None,o,p]) def test_slice_fancy_indexing_dim_inject_and_collapse(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() # noqa # dim injection and collapse helper_test_op([(2,5,6,5,3,4)], lambda x: x[1,b,None,d,1], lambda x: x[1,j,None,o,1]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[None,b,2,d,None], lambda x: x[None,j,2,o,None]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[...,1,d,None], lambda x: x[...,1,o,None]) def test_slice_fancy_indexing_with_tensors(self): # indexing using idx with different dim helper_test_op([(2,3)], lambda x: x[torch.tensor([[0,0,0],[0,0,0]]), torch.tensor(1)], lambda x: x[Tensor([[0,0,0],[0,0,0]]), Tensor(1)]) helper_test_op([(2,3)], lambda x: x[torch.tensor([1]), torch.tensor([[0,0,0],[0,0,0]])], lambda x: x[Tensor([1]), Tensor([[0,0,0],[0,0,0]])]) helper_test_op([(2,3)], lambda x: x[torch.tensor([[0,0,0],[0,0,0]]), torch.tensor([2,1,1])], lambda x: x[Tensor([[0,0,0],[0,0,0]]), Tensor([2,1,1])]) helper_test_op([(2,3)], lambda x: x[torch.tensor([[0,1,-1],[-1,-2,0]]), torch.tensor([2,1,-1])], lambda x: x[Tensor([[0,1,-1],[-1,-2,0]]), Tensor([2,1,-1])]) def test_slice_fancy_indexing_list_indices(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() helper_test_op([(2,5,6,5,3,4)], lambda x: x[[[0]]], lambda x: x[[[0]]]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[0],b,c,d,:], lambda x: x[[0],j,k,o,:]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[[[0]]],b,c,d,[[1]]], lambda x: x[[[[0]]],j,k,o,[[1]]]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[1,0],b,c,d,:], lambda x: x[[1,0],j,k,o,:]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,[1,2,3],...], lambda x: x[i,j,k,[1,2,3],...]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,[[1],[2],[3]],...], lambda x: x[i,j,k,[[1],[2],[3]],...]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,[2,1,0],c,[2,1,0],e], lambda x: x[i,[2,1,0],k,[2,1,0],p]) def test_slice_fancy_indexing_tuple_indices(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() helper_test_op([(2,5,6,5,3,4)], lambda x: x[(((0,),),)], lambda x: x[(((0,),),)]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[(0,),b,c,d,:], lambda x: x[(0,),j,k,o,:]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[(1,0),b,c,d,:], lambda x: x[(1,0),j,k,o,:]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,(1,2,3),...], lambda x: x[i,j,k,(1,2,3),...]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,((2,),(1,),(0,)),c,(2,1,0)], lambda x: x[i,((2,),(1,),(0,)),k,(2,1,0)]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[1,(2,1,0),None,c,(2,1,0),e], lambda x: x[1,(2,1,0),None,k,(2,1,0),p]) def test_slice_fancy_indexing_list_with_tensors(self): a,b,c,d,e,i,j,k,o,p = self._get_index_randoms() helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a]], lambda x: x[[i]]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,1]], lambda x: x[[i,1]]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,[1,1]]], lambda x: x[[i,[1,1]]]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,(1,1)]], lambda x: x[[i,(1,1)]]) helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,b,c,d,e]], lambda x: x[[i,j,k,o,p]]) def test_slice_fancy_indexing_errors(self): a = Tensor.ones(10,11,12) # tensors used as indices must be int tensors with self.assertRaises(IndexError): a[Tensor(1.1)] with self.assertRaises(IndexError): a[Tensor([True, True])] # shape mismatch, cannot broadcast. either exception is okay with self.assertRaises((IndexError, ValueError)): a[Tensor.randint(3,1,1,1), Tensor.randint(1,4,1,1), Tensor.randint(2,4,4,1)] with self.assertRaises((IndexError, ValueError)): a[Tensor.randint(3,1,1,1), Tensor.randint(1,4,1,1,1)] def test_gather(self): # indices cannot have gradient # indices cannot be negative (torch gather) b = torch.randint(3, size=[3,4,5], dtype=torch.int64, requires_grad=False) a = Tensor(b.detach().numpy().astype(np.int32), dtype=dtypes.int32, requires_grad=False) helper_test_op([(4,5,6)], lambda x: x.gather(dim=0, index=b), lambda x: x.gather(dim=0, index=a)) helper_test_op([(4,5,6)], lambda x: x.gather(dim=1, index=b), lambda x: x.gather(dim=1, index=a)) helper_test_op([(4,5,6)], lambda x: x.gather(dim=2, index=b), lambda x: x.gather(dim=2, index=a)) helper_test_op([(3,4,5)], lambda x: x.gather(dim=0, index=b), lambda x: x.gather(dim=0, index=a)) helper_test_op([(4,5,6)], lambda x: x.gather(dim=-1, index=b), lambda x: x.gather(dim=-1, index=a)) helper_test_op([(4,5,6)], lambda x: x.gather(dim=-2, index=b), lambda x: x.gather(dim=-2, index=a)) helper_test_op([(4,5,6)], lambda x: x.gather(dim=-3, index=b), lambda x: x.gather(dim=-3, index=a)) self.helper_test_exception([(4,5,6)], lambda x: x.gather(dim=0, index=torch.tensor([1], dtype=torch.int64)), lambda x: x.gather(dim=0, index=Tensor([1], dtype=dtypes.int32)), expected=(RuntimeError, AssertionError)) self.helper_test_exception([(2,1,1)], lambda x: x.gather(dim=0, index=b), lambda x: x.gather(dim=0, index=a), expected=(RuntimeError, AssertionError)) helper_test_op(None, lambda x: x.gather(dim=0, index=torch.tensor([2, 1, 0, 1, 2], requires_grad=False)), lambda x: x.gather(dim=0, index=Tensor([2, 1, 0, 1, 2])), vals=[[1., 2., 3.]]) def test_scaled_product_attention(self): helper_test_op([(32,8,16,64), (32,8,16,64), (32,8,16,64)], torch.nn.functional.scaled_dot_product_attention, Tensor.scaled_dot_product_attention) helper_test_op([(32,8,16,64), (32,8,16,64), (32,8,16,64), (32,8,16,16)], lambda x,y,z,m: torch.nn.functional.scaled_dot_product_attention(x,y,z,attn_mask=m), lambda x,y,z,m: Tensor.scaled_dot_product_attention(x,y,z,attn_mask=m)) def test_scaled_product_attention_mismatch_ls(self): helper_test_op([(32,8,4,64), (32,8,16,64), (32,8,16,64)], torch.nn.functional.scaled_dot_product_attention, Tensor.scaled_dot_product_attention) def test_scaled_product_attention_causal(self): helper_test_op([(32,8,16,64), (32,8,16,64), (32,8,16,64)], lambda x,y,z: torch.nn.functional.scaled_dot_product_attention(x,y,z,is_causal=True), lambda x,y,z: Tensor.scaled_dot_product_attention(x,y,z,is_causal=True)) def test_binary_crossentropy(self): helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.binary_cross_entropy(x.sigmoid(),torch.clip(y,0,1)), lambda x,y: x.sigmoid().binary_crossentropy(y.clip(0,1))) helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.binary_cross_entropy_with_logits(x,torch.clip(y,0,1)), lambda x,y: x.binary_crossentropy_logits(y.clip(0,1))) helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.binary_cross_entropy_with_logits(x,torch.clip(y,0,1)), lambda x,y: x.sigmoid().binary_crossentropy(y.clip(0,1))) helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.binary_cross_entropy(x.sigmoid(),torch.clip(y,0,1)), lambda x,y: x.binary_crossentropy_logits(y.clip(0,1))) def test_binary_crossentropy_reductions(self): for r in ("mean", "sum", "none"): helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.binary_cross_entropy(x.sigmoid(), torch.clip(y,0,1), reduction=r), lambda x,y: x.sigmoid().binary_crossentropy(y.clip(0,1), reduction=r)) helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.binary_cross_entropy_with_logits(x, torch.clip(y,0,1), reduction=r), lambda x,y: x.binary_crossentropy_logits(y.clip(0,1), reduction=r)) def test_cross_entropy(self): helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.cross_entropy(x, y), lambda x,y: x.cross_entropy(y)) helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.cross_entropy(x, torch.argmax(y, dim=1)), lambda x,y: x.cross_entropy(y.argmax(axis=1)), forward_only=True) def test_cross_entropy_reductions(self): for r in ("mean", "sum", "none"): helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.cross_entropy(x, y, reduction=r), lambda x,y: x.cross_entropy(y, reduction=r)) self.helper_test_exception([(32,10), (32,10)], lambda x,y: torch.nn.functional.cross_entropy(x, y, reduction="typo"), lambda x,y: x.cross_entropy(y, reduction="typo"), expected=ValueError) def test_cross_entropy_smoothing(self): for ls in (0., 0.3, 0.7, 1.): helper_test_op([(32,10), (32,10)], lambda x,y: torch.nn.functional.cross_entropy(x, y, label_smoothing=ls), lambda x,y: x.cross_entropy(y, label_smoothing=ls)) def test_one_hot(self): data = [1, 2, 4] helper_test_op([], lambda: torch.nn.functional.one_hot(torch.tensor(data), 6).type(torch.int32), lambda: Tensor(data).one_hot(6), forward_only=True) helper_test_op([], lambda: torch.nn.functional.one_hot(torch.tensor(data)).type(torch.int32), lambda: Tensor(data).one_hot(), forward_only=True) data = [[[1, 2, 3], [0, 3, 5]], [[1, 2, 3], [0, 3, 5]]] helper_test_op([], lambda: torch.nn.functional.one_hot(torch.tensor(data), 8).type(torch.int32), lambda: Tensor(data).one_hot(8), forward_only=True) helper_test_op([], lambda: torch.nn.functional.one_hot(torch.tensor(data)).type(torch.int32), lambda: Tensor(data).one_hot(), forward_only=True) def test_masked_fill(self): helper_test_op([(32,10)], lambda x: x.masked_fill((x>0.1).detach(), -math.inf)) helper_test_op([(32,10)], lambda x: x.masked_fill((x<0.1).detach(), -math.inf)) @unittest.skipIf(Device.DEFAULT == "QCOM", "OpenCL fails to compile this (both on GPU(qcom)/QCOM backends)") def test_cast(self): helper_test_op([(3, 3)], lambda x: x.float()) helper_test_op(None, lambda x: x.float(), vals=[[0, 1, 2, 3]], forward_only=True) helper_test_op(None, lambda x: x.float(), vals=[[True, False]], forward_only=True) helper_test_op([(3, 3)], lambda x: x.int(), forward_only=True) helper_test_op([(3, 3)], lambda x: x.bool(), forward_only=True) def test_bitcast(self): helper_test_op([(3, 3)], lambda x: x.view(torch.int32), lambda x: x.bitcast(dtypes.int32), forward_only=True) class TestOpsUint8(unittest.TestCase): @unittest.skip('this is broken for negative numbers') def test_cast(self): helper_test_op([(2,3,64,64)], lambda x: x.type(torch.uint8), lambda x: x.cast('uint8'), forward_only=True) def test_cast_relu(self): helper_test_op([(2,3,64,64)], lambda x: x.relu().type(torch.uint8), lambda x: x.relu().cast('uint8'), forward_only=True) def test_interpolate_bilinear(self): out_sz = (10, 10) helper_test_op([(2,3,64,64)], lambda x: torch.nn.functional.interpolate((10*x).relu().type(torch.uint8), size=out_sz, mode="bilinear"), lambda x: Tensor.interpolate((10*x).relu().cast('uint8'), size=out_sz, mode="linear"), forward_only=True) def test_interpolate_nearest(self): out_sz = (10, 10) helper_test_op([(2,3,64,64)], lambda x: torch.nn.functional.interpolate((10*x).relu().type(torch.uint8), size=out_sz, mode="nearest"), lambda x: Tensor.interpolate((10*x).relu().cast('uint8'), size=out_sz, mode="nearest"), forward_only=True) def test_interpolate_nearest_exact(self): out_sz = (10, 10) helper_test_op([(2,3,64,64)], lambda x: torch.nn.functional.interpolate((10*x).relu().type(torch.uint8), size=out_sz, mode="nearest-exact"), lambda x: Tensor.interpolate((10*x).relu().cast('uint8'), size=out_sz, mode="nearest-exact"), forward_only=True) if __name__ == '__main__': np.random.seed(1337) unittest.main(verbosity=2)