import numpy as np from tinygrad.helpers import getenv from tinygrad import dtypes, Tensor dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None if getenv("INT"): dtype_in = dtypes.int8 acc_dtype = dtypes.int32 N = getenv("N", 4096) M = getenv("M", N) K = getenv("K", N) CNT = getenv("CNT", 10) ATOL = getenv("ATOL", 1e-4) RTOL = getenv("RTOL", 3e-2) if __name__ == "__main__": a, b = Tensor.rand(M, K, dtype=dtype_in).realize(), Tensor.rand(K, N, dtype=dtype_in).realize() for i in range(CNT): if i > 0 and getenv("RAND", 0) != 0: a, b = Tensor.rand(M, K, dtype=dtype_in).realize(), Tensor.rand(K, N, dtype=dtype_in).realize() c = a.matmul(b, acc_dtype=acc_dtype).realize() comp = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32) nc = c.numpy() try: np.testing.assert_allclose(nc, comp, atol=ATOL, rtol=RTOL) except AssertionError as e: if getenv("DEBUG_VALUES") > 0: indices = np.where(~np.isclose(nc, comp, rtol=RTOL, atol=ATOL)) non_matching_elements_nc = nc[indices] non_matching_elements_comp = comp[indices] print(indices) print("result :", non_matching_elements_nc) print("ground truth:", non_matching_elements_comp) raise e