* ww/Fixed Tensor.randint() to accept shape tuples ()
* ww/Wrote a test to cover this typo
* ww/Updated Tensor random objects to optionally take (,) or *() to be more consistent
* ww/no lint no worries
* ww/Made peace with linter
* ww/Added new line can't reduce line size without reducing readablitity
* ww/reverted to using .mul
* remove pytest marks
* test more stuff
* fine revert some
* add that mark back
* skip that
* hmm LLVM does not work on ubuntu
* too slow on CUDA CI
* dup test
* pretty multinomial
p, cdf_normalized -> weight, cdf
symmetric unsqueeze / squeeze
check num_sample > 0
TODO: how do we want to handle 0/0 in general?
* no 0-dim input
* single sum
* add Tensor.multinomial only with replacement
* add support for 2D input in Tensor.multinomial
* fix multinomial output shape
* allow passing replacement=False to Tensor.multinomial when num_samples=1
* improve tests for Tensor.multinomial
* fix edge case in Tensor.multinomial
* Tensor.multinomial no more staticmethod
* models matrix
* fix typo and install gpu deps
* install llvm deps if needed
* fix
* testops with cuda
* remove pip cache since not work
* cuda env
* install cuda deps
* maybe it will work now
* i can't read
* all tests in matrix
* trim down more
* opencl stuff in matrix
* opencl pip cache
* test split
* change cuda test exclusion
* test
* fix cuda maybe
* add models
* add more n=auto
* third thing
* fix bug
* cache pip more
* change name
* update tests
* try again cause why not
* balance
* try again...
* try apt cache for cuda
* try on gpu:
* try cuda again
* update packages step
* replace libz-dev with zlib1g-dev
* only cache cuda
* why error
* fix gpuocelot bug
* apt cache err
* apt cache to slow?
* opt and image in single runner
* add a couple n=autos
* remove test matrix
* try cuda apt cache again
* libz-dev -> zlib1g-dev
* remove -s since not supported by xdist
* the cache takes too long and doesn't work
* combine webgpu and metal tests
* combine imagenet to c and cpu tests
* torch tests with linters
* torch back by itself
* small windows clang test with torch tests
* fix a goofy windows bug
* im dumb
* bro
* clang with linters
* fix pylint error
* linter not work on windows
* try with clang again
* clang and imagenet?
* install deps
* fix
* fix quote
* clang by itself (windows too slow)
* env vars for imagenet
* cache pip for metal and webgpu tests
* try torch with metal and webgpu
* doesn't work, too long
* remove -v
* try -n=logical
* don't use logical
* revert accidental thing
* remove some prints unless CI
* fix print unless CI
* ignore speed tests for slow tests
* clang windows in matrix (ubuntu being tested in imagenet->c test)
* try manual pip cache
* fix windows pip cache path
* all manual pip cache
* fix pip cache dir for macos
* print_ci function in helpers
* CI as variable, no print_ci
* missed one
* cuda tests with docker image
* remove setup-python action for cuda
* python->python3?
* remove -s -v
* try fix pip cache
* maybe fix
* try to fix pip cache
* is this the path?
* maybe cache pip
* try again
* create wheels dir
* ?
* cuda pip deps in dockerfile
* disable pip cache for clang
* image from ghcr instead of docker hub
* why is clang like this
* fast deps
* try use different caches
* remove the fast thing
* try with lighter image
* remove setup python for cuda
* small docker and cuda fast deps
* ignore a few more tests
* cool docker thing (maybe)
* oops
* quotes
* fix docker command
* fix bug
* ignore train efficientnet test
* remove dockerfile (docker stuff takes too long)
* remove docker stuff and normal cuda
* oops
* ignore the tests for cuda
* does this work
* ignore test_train on slow backends
* add space
* llvm ignore same tests as cuda
* nvm
* ignore lr scheduler tests
* get some stats
* fix ignore bug
* remove extra '
* remove and
* ignore test for llvm
* change ignored tests and durationon all backends
* fix
* and -> or
* ignore some more cuda tests
* finally?
* does this fix it
* remove durations=0
* add some more tests to llvm
* make last pytest more readable
* fix
* don't train efficientnet on cpu
* try w/out pip cache
* pip cache seems to be generally better
* pytest file markers
* try apt fast for cuda
* use quick install for apt-fast
* apt-fast not worth
* apt-get to apt
* fix typo
* suppress warnings
* register markers
* disable debug on fuzz tests
* change marker names
* apt update and apt install in one command
* update marker names in test.yml
* webgpu pytest marker
* added kaiming_uniform init for conv2d and linear layers
* fix: set getattr
* up
* fix: set getattr
* fix comments
* better does not mean it is good
* more nonlinearities
* added test
checks the distribution of default relu option
* prettier
* fix kernel size
* edit distribution of returned tensor
* complete tests and fix fan_mode
* added higher dim test
* prettier test
* fix silly blank
* just leaky_relu mode
* default fan in and leaky relu
* update params
* fix test
* shorter
* generalize Tensor.uniform and adjust kaiming init
- added low and high parameters to Tensor.uniform function, so it can have a specific range (default is 0 to 1)
- adjusted return line of kaiming_uniform
* range from -1 to 1
* delete comment
* adjusted test_uniform
* fixed
* delete comment
* Add tests for random creation functions
* It worked on my machine!
* Rename to helper_same_distribution
* Remove extra line
* Add tests for equal distribution
* Test without scipy
* Do a different test for randn