from https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/utils.py
```
blocks_args = [
'r1_k3_s11_e1_i32_o16_se0.25',
'r2_k3_s22_e6_i16_o24_se0.25',
'r2_k5_s22_e6_i24_o40_se0.25',
'r3_k3_s22_e6_i40_o80_se0.25',
'r3_k5_s11_e6_i80_o112_se0.25',
'r4_k5_s22_e6_i112_o192_se0.25',
'r1_k3_s11_e6_i192_o320_se0.25',
]
```
now it's a persian cat.
* streamlined numerical_jacobian
* Got rid of the g loop in Conv2D.forward
* ereased stupid line
* nothing
* no loops in Conv2D forward
* Conv2D backprop improved
* stupid things in examples
* alternative to einsum
* Conv2D backward einsum alternative
* tidying up
* tidied up
* no ravel
* got rid of print
* Update efficientnet.py
* Update efficientnet.py
* Update efficientnet.py
* only tensordot
* 255.0
* whitespace
* aspect ratio error in efficientnet
* noprint
Co-authored-by: Marcel Bischoff <marcel@Marcels-iMac.local>
* copy tensors to and from gpu
* add on GPU
* adding works
* we stick shapes in
* works on cpu and gpu
* test changes, not passing yet
* something else
* op tests pass
* add, mean, and sum have working forward/backward
* mul ops test
* no gpu support, no problem
* test pass, clean up later
* gpu cleanup
* cleanup test ops, don't let div fail
* revert more
* aimpler dispatcher
* clean up grad
* GPU and
* grad is a Tensor now
* gate test on GPU
* cleanups
* late loading gpu
* GPU as input option
* last cleanups
* streamlined numerical_jacobian
* Got rid of the g loop in Conv2D.forward
* ereased stupid line
* nothing
* no loops in Conv2D forward
* Conv2D backprop improved
Co-authored-by: Marcel Bischoff <marcel@Marcels-iMac.local>