* Fix track_running_stats in batchnorm
* Fix linter
* Update test_fold_conv_batchnorm_notrain to keep allowed at 1
* Add test_fold_conv_batchnorm_notrain_no_running_stats
* Save 1 line
* most of the work from the uops2 branch
* schedule
* realize
* kernel
* lowerer
* search
* green
* merge uops with ops
* Revert "merge uops with ops"
This reverts commit 1408a59f12c97e3466679884266b247cf9df46bc.
* fix benchmark
* remove extra dedup
* revert the .detach() in layernorm
it's only correct in LayerNorm where input is the data, and not correct in GroupNorm and InstanceNorm that reused layernorm.
Added backward tests for weights, bias and input for these norms.
* bigger atol for llvm
* relax backward more
* mockgpu nv
* works
* comment that out
* fix merge
* setup gpuocelot
* install packages
* not run all of them
* passes
* fix ci
* almost
* should pass
* linter
* linter 2
* try this?
* ugn, not supported
* ci
* remove ticket from description
* better descs
* Embedding is in one kernel
* embedding is one kernel
* rm extra line
* newline
* bert test counts state vars?
* add a test?
* move items around
---------
Co-authored-by: Patrick Tsai <patosai@users.noreply.github.com>
* fix SCE ignore_index with label_smoothing
* break up the line
* only 3 cats in test
* Revert "only 3 cats in test"
This reverts commit 18be069c902d4fa90d06201b0cc9ac61d0a60b91.
* UnsyncedBatchNorm with synced trainable weights for hlb cifar
* multitensor reshape tests
* test mlb assign change axis
* E501
* argfix axis
* don't import batchnorm from hlb_cifar in test_multitensor
* pass num_devices to UnsyncedBatchNorm in test, allow UnsyncedBatchNorm to be used with LB
* add backprop test for UnsyncedBatchNorm
* break out MLB assign and reshape changes
* manually shard running mean and running var
* don't shard unless syncbn=0
* replace nn.BatchNorm2d with UnsyncedBatchNorm
* don't increment num_batches_tracked if not tracking running stats
* update tests
* oops
* Revert "oops"
This reverts commit 5e8a67a535abea2ff288b1b804a9aa95eba40732.
* Revert "update tests"
This reverts commit 7ebf65d89ace1d3a32c3b28ee323ddee253262d6.
* Revert "don't increment num_batches_tracked if not tracking running stats"
This reverts commit 78de0ea9ee8cbd65dce28bd4abcc131c98451aa2.
* Revert "replace nn.BatchNorm2d with UnsyncedBatchNorm"
This reverts commit d03da53da70f009338e95f2b46315ac02a30149a.
* don't increment num_batched_tracked if not tracking running stats
* oops
* test_batchnorm_axis
* compare against torch
* types
---------
Co-authored-by: chenyu <chenyu@fastmail.com>
* lazy rewrite, try 2
* min fix tests
* pass contig test
* put broken pads back
* move that to realize
* no contig child fixes array packing
* so wrong
* now that's correct
* base children
* fix bind issues
* disable to_image_idx
* fix tests
* that failure shouldn't break other tests
* more fixes
* fix torch
* skip failing tests in CI
* 1e-7
* half is broken
* 1e-6 margin of error
* beautiful mnist
* beautiful mnist example
* from tinygrad import Tensor
* more beautiful
* the jit is super core tinygrad
* globalcounters reset on jit run
* symlinks and exclude
* beautiful_cartpole
* evaluate is it's own function
* no symlinks
* more beautiful
* jit reset for double speed
* type hinting for JIT
* beautiful_mnist gets 98%
* beautiful_mnist < 4s with BEAM=2
* better cartpole
* use actor critic
* zero_grad got lost
* delete double relu
* stable cartpole with PPO
* beautiful_cartpole is more beautiful
* REPLAY_BUFFER
* beautiful stuff typechecks
* None support in shape
* hp tuning
* winograd
* simplify local groups code
* comment
* respects self.opts.has_local
* always simplify ones
* make mypy happy
* move reshape, WINO flag
* wino flag, simple forward backward test for wino
* extra wino test
* merge oops
* comments
* axis_needs_valid -> axis_is_masked
* don't delete needs_valid (it's unused though)
* make linter happy
* make linter happy
* smaller test
* change number
* make wino tests very small
* models matrix
* fix typo and install gpu deps
* install llvm deps if needed
* fix
* testops with cuda
* remove pip cache since not work
* cuda env
* install cuda deps
* maybe it will work now
* i can't read
* all tests in matrix
* trim down more
* opencl stuff in matrix
* opencl pip cache
* test split
* change cuda test exclusion
* test
* fix cuda maybe
* add models
* add more n=auto
* third thing
* fix bug
* cache pip more
* change name
* update tests
* try again cause why not
* balance
* try again...
* try apt cache for cuda
* try on gpu:
* try cuda again
* update packages step
* replace libz-dev with zlib1g-dev
* only cache cuda
* why error
* fix gpuocelot bug
* apt cache err
* apt cache to slow?
* opt and image in single runner
* add a couple n=autos
* remove test matrix
* try cuda apt cache again
* libz-dev -> zlib1g-dev
* remove -s since not supported by xdist
* the cache takes too long and doesn't work
* combine webgpu and metal tests
* combine imagenet to c and cpu tests
* torch tests with linters
* torch back by itself
* small windows clang test with torch tests
* fix a goofy windows bug
* im dumb
* bro
* clang with linters
* fix pylint error
* linter not work on windows
* try with clang again
* clang and imagenet?
* install deps
* fix
* fix quote
* clang by itself (windows too slow)
* env vars for imagenet
* cache pip for metal and webgpu tests
* try torch with metal and webgpu
* doesn't work, too long
* remove -v
* try -n=logical
* don't use logical
* revert accidental thing
* remove some prints unless CI
* fix print unless CI
* ignore speed tests for slow tests
* clang windows in matrix (ubuntu being tested in imagenet->c test)
* try manual pip cache
* fix windows pip cache path
* all manual pip cache
* fix pip cache dir for macos
* print_ci function in helpers
* CI as variable, no print_ci
* missed one
* cuda tests with docker image
* remove setup-python action for cuda
* python->python3?
* remove -s -v
* try fix pip cache
* maybe fix
* try to fix pip cache
* is this the path?
* maybe cache pip
* try again
* create wheels dir
* ?
* cuda pip deps in dockerfile
* disable pip cache for clang
* image from ghcr instead of docker hub
* why is clang like this
* fast deps
* try use different caches
* remove the fast thing
* try with lighter image
* remove setup python for cuda
* small docker and cuda fast deps
* ignore a few more tests
* cool docker thing (maybe)
* oops
* quotes
* fix docker command
* fix bug
* ignore train efficientnet test
* remove dockerfile (docker stuff takes too long)
* remove docker stuff and normal cuda
* oops
* ignore the tests for cuda
* does this work
* ignore test_train on slow backends
* add space
* llvm ignore same tests as cuda
* nvm
* ignore lr scheduler tests
* get some stats
* fix ignore bug
* remove extra '
* remove and
* ignore test for llvm
* change ignored tests and durationon all backends
* fix
* and -> or
* ignore some more cuda tests
* finally?
* does this fix it
* remove durations=0
* add some more tests to llvm
* make last pytest more readable
* fix
* don't train efficientnet on cpu
* try w/out pip cache
* pip cache seems to be generally better
* pytest file markers
* try apt fast for cuda
* use quick install for apt-fast
* apt-fast not worth
* apt-get to apt
* fix typo
* suppress warnings
* register markers
* disable debug on fuzz tests
* change marker names
* apt update and apt install in one command
* update marker names in test.yml
* webgpu pytest marker
* initial commit
* 81 passing
* 105 passing tests
* 148 passing
* CI tests
* install dep on ci
* try opencl pkgs
* try using vulkan
* down to only 6 failing
* refactor
* cleaning up
* another test skipped due to buffer limit
* linter
* segfault
* indent fix
* another segfault found
* small touchups
* Fix max and maxpool tests
* Add constant folding
* Add javascript export script
* better asserts in codegen
* manual upcasting
* reverted token type change
* skip safetensor test due to unsupported type
* FIx efficientnet and all other model tests
* Remove np copy
* fixed indent and missing import
* manually destroy the buffer
* revert back to length
* linter errors
* removed extra val
* skip broken tests
* skipping more tests
* Make the page pretty
* Save model weights as safetensor
* Fix imagenet to c test
* Fix second imagenet to c bug
* Async and paralel kernel compilation
* workgroup support
* reversed local size
* fixed non local bug
* correct local groups
* ci experiment
* removed typo
* Fix define local by using shared memory
* Refactor
* try running on mac
* match metal tests
* add more workers
* scope down tests
* trying windows runner
* fixed windows env
* see how many it can do
* merged master
* refactor
* missed refactor
* increase test suite coverage
* missing import
* whitespace in test_efficientnet.py
* getting there
* fixed reset
* fixed bufs
* switched to cstyle
* cleanup
* min/max rename
* one more linter issue
* fixed demo
* linter
* testing ci chrome
* add unsafe webgpu arg
* add build step
* remove WEBGPU from cmd line
* use module
* try forcing directx
* trying forced metal backend
* temp disable conv2d for CI
* disable conv_trasnpose2d
---------
Co-authored-by: 0x4d - Martin Loretz <20306567+martinloretzzz@users.noreply.github.com>
Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
* matrix strategy
* push env to GITHUB_ENV
* use printf instead of echo
* use temp helper function for cross os paths
* use path join
* switched to using temp helper function
* skip test on windows due to memory limit
* small fix
* removed semi
* touchups
* clean up
* seperate tests
* test changes to test_utils on windows
* small refactor
* more cleanups
* undo helpers change
* only skip if in CI and WINDOWS
* added metal int64 and some simple tests
* removed bool return type def
* typo in test
* also missing in clang and gpu runtimes
* switched order for opencl
* increased atol and removed new line in kernel prefix
* Add ResNet inference test and cannon
* Test with ResNet50
* test_car works with resnet fix
* Add KiTS19 dataset
* KiTS19: Implement iterate
* No batch load for this dataset
* Save results on iterate
* Implement dice score
* Add data prep and eval functions
* Resolve shape issue
* Conversion works but wrong values
* Segfaults when load_from_pretrained is called
* Fix segfault and assign properly
* Final result generated, though very slow
* Store and load final result to save time
* Fix typo in finalize
* Score computes
* More bug fixes, dice score is very low
* Working broken code
* Assign output values to result
* Getting a much higher score now
* Fix dataset preprocessing
* Mean DICE score of 88.5
* Ugh, typo
* Attempt to reimplement model
* Rename layers
* Tiny model works, kinda
* Accuracy? gone
* Implement InstanceNorm and match torch
* Test instance norm 2d and 3d
* Combined input block with downsample block
* Tiny model works, support strided convtranspose
* Commands to download dataset
* Clean up a bit
* unet3d_v2 -> unet3d
* Remove duplicated code
* Oops, put tests back
* feat: promote Embedding to nn
* fix: fix failing test
* feat: add test with jit
* feat: rewrite embedding to no longer need stacked for loops
* clean+fix: don't know how that happened