* `global_load` and `global_store` using buffer dtype
* `UOps.PHI` in all dtypes
* `UOps.ALU` in all dtypes
* `UOps.CONST` & `UOps.DEFINE_ACC` in all dtypes
* -- endof implementation --
+tiny lint changes
* these tests require the fp16 extention
you can run them locally to confirm they're green: (GPT2 test is broken in master for mac, see [this](https://discord.com/channels/1068976834382925865/1069001075828469790/1177993277958533261)
`GPU=1 python3 -m pytest test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_dequantizelinear_e4m3fn_float16_cpu test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_max_float16_cpu test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_min_float16_cpu test/models/test_real_world.py::TestRealWorld::test_llama test/models/test_real_world.py::TestRealWorld::test_gpt2 test/models/test_whisper.py test/test_specific_conv.py::TestSpecific::test_big_vec_mul`
skip the new test_linearizer_failures in CI GPU because of the fp16 extention
This passes on a real GPU since the extention is available:
`GPU=1 python3 -m pytest test/test_linearizer_failures.py::TestLinearizerFailures::test_failure_8`
see CI logs [here](https://github.com/tinygrad/tinygrad/actions/runs/6996590597/job/19032641427#step:14:644)
* these tests fail in CI due to segfaults and CPU crashes
To confirm they're green locally, you can run the following commands:
1. For the tests skipped in test_ops.py (note: CLANG is very slow)
`for var in GPU CUDA CLANG; do export $var=1; for test in test/test_ops.py::TestOps::test_slice_fancy_indexing_no_dim_collapse test/test_ops.py::TestOps::test_slice_fancy_indexing_dim_collapse_int test/test_ops.py::TestOps::test_slice_fancy_indexing_dim_inject_none test/test_ops.py::TestOps::test_slice_fancy_indexing_dim_inject_and_collapse; do python3 -m pytest $test; done; unset $var; done`
2. For the ONNX tests skipped in CLANG:
```
CLANG=1 python3 -m pytest test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_ai_onnx_ml_array_feature_extractor_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_gather_elements_0_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_3d_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_gather_elements_1_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1_mean_weight_negative_ii_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_weight_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_4d_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_3d_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_gather_elements_negative_indices_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1d2d3d4d5_mean_weight_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1_mean_weight_negative_ii_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_no_weight_reduction_mean_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1d2d3d4d5_mean_weight_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3d4d5_mean_weight_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_mean_weight_negative_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_4d_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_reduction_mean_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_weight_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_reduction_sum_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_reduction_sum_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_reduction_sum_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_reduction_mean_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_expanded_cpu
```
3. The LLVM test I skipped here is already [skipped in master for all backends](https://github.com/tinygrad/tinygrad/blob/master/test/external/external_test_onnx_backend.py#L186), I just made it more specific
`LLVM=1 python3 -m pytest test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_dequantizelinear_e4m3fn_float16_cpu`
* Revert "these tests fail in CI due to segfaults and CPU crashes"
This reverts commit 15db57014381a4449d563526ac6c870e36257658.
* merge with cleanup-vectorized-hip-renders
* barely working HIP P1, ALU ops need a refactor?
* manage the fact that in HIP [half2 is actually an unsigned int vec](f921880387/hip/include/hip/amd_detail/amd_hip_fp16.h (L59)) and half is a totally different __half that [has an unsigned int element in it](f921880387/hip/include/hip/amd_detail/amd_hip_fp16.h (L50)) but can't be accessed [because it's private](f921880387/hip/include/hip/amd_detail/amd_hip_fp16.h (L86)). If you just do this:
```
half2 val0 = // ...
half val1 = // ...
```
then you can't do:
```
val0.x + val1 // error: use of overloaded operator '+' is ambiguous (with operand types 'unsigned short' and 'half' (aka '__half'))
```
* update the sign definition to avoid division by zero in all dtypes
* diff cleanup p1: why were these in the diff anyways
* less hacky HIP, enable CIFAR fp16 benchmark, test ops for HIP in CI!
add ALU ops overloads for HIP
this will make HIP max work
handle mod
Revert "handle mod"
This reverts commit 370fd4b3fbe99b6ae8cc293d005b106628205933.
update max to use hmax
add HIP GEP render logic
enable CIFAR fp16 benchmark
test ops for HIP
back to store as float because this only works for float4 grouping right now
test_ops for hip!!
always sign
* back to the sign we had before because we cant do a backward pass on a Less node
* remove old hacks
HIP compiling test_ops in CI takes ~9 mins, not doing it for now
new HIP ALUs
* reduce accs done right
* refactor to function
* no device hacks
hacks p2
the other way
* LLVM ALU ops
half, float and double are all float
update max
* update test_uops, cmplt is always a bool in the real linearizer. assertAlmostEqual is wrong when ret is bool
* cleanup LLVM wrong code
* dummy change for the CUDA install glitch
---------
Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
* update cstyle renderers to take a dtype in code_for_op
* implement NEG for bools in LLVM
* update triton
---------
Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
* cuda with gpuctypes
* hip gpuctypes
* graphs
* rename + linter happy
* use cpu_time_execution
* no ji in build_kernel_node_params
* remove hip_wrapper
* hip fix
* no arc
* smalle changes
* no clean moduke in cudacpu
* cpu tests pass
* torch works
* works
* metal works
* fix ops_disk
* metal jit works
* fix openpilot
* llvm and clang work
* fix webgpu
* docs are rly broken
* LRU works on metal
* delete comment
* revert name to ._buf. LRU only on Compiled
* changes
* allocator
* allocator, getting closer
* lru alloc
* LRUAllocator
* all pass
* metal
* cuda
* test examples
* linearizer
* test fixes
* fix custom + clean realize
* fix hip
* skip tests
* fix tests
* fix size=0
* fix MOCKHIP
* fix thneed
* copy better
* simple
* old style metal copy
* fix thneed
* np reshape
* give cuda a device
* bring hip graph back
* share with metal
* fix linter
* remove hasattrs
* Update ops_hip.py
* hip wrapper does not use _buf
---------
Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
* add name support
* use fetch in gpt2
* remove requests from main lib, networkx also optional
* umm, keep that assert
* updates to fetch
* i love the walrus so much
* stop bundling mnist with tinygrad
* err, https
* download cache names
* add DOWNLOAD_CACHE_VERSION
* need env.
* ugh, wrong path
* replace get_child
* remove force_wait
* refactor
* get rid of stupid ASTRunner
* fix del in diskbuffer
* BufferOps.FROM_UNDERLYING
* put offset in the rawbuffer
* fix bugs
* use exec
* autopad shapetracker for BEAM
* OptOps.PADTO
* skip that test for now
* correct padding reduce axis
* just 32
* avoid more than double the FLOPs
* cleanups
* test case
* no support for triton and llvm yet
* typos
* symbolic shape would not work
* cannot PADTO with MAX kernel
* advance db version
* no breaking change - don't advance db version
* is triton just python?
* Revert "is triton just python?"
This reverts commit 17e776c25587615e33a3634c2fb0bb8591ce65d4.
* Revert "Revert "is triton just python?""
This reverts commit 6c434c01e1c4b0ea0431ec18632cd859fb3cf260.
* support llvm
* is it really passing in CI only?
* update tests
* oh triton test passed
* simpler
* revert that, with a test
* check if st are the same
* Revert "check if st are the same"
This reverts commit d2a5eac110a5da1af82a2728c883779ef69c3cad.
* update the db version
* rebase artifact
* replace all _dtypen with dtype.vec(n)
fix: print works
* conceptul refactor of cstyle render_load logic
* linearizer GEP is explicit that its dtype is the scalar version of localtype
* vectorized global_store and load don't need a conditional
* beautiful mnist
* beautiful mnist example
* from tinygrad import Tensor
* more beautiful
* the jit is super core tinygrad
* globalcounters reset on jit run
* symlinks and exclude
* beautiful_cartpole
* evaluate is it's own function
* no symlinks
* more beautiful
* jit reset for double speed
* type hinting for JIT
* beautiful_mnist gets 98%
* beautiful_mnist < 4s with BEAM=2
* better cartpole
* use actor critic
* zero_grad got lost
* delete double relu
* stable cartpole with PPO
* beautiful_cartpole is more beautiful
* REPLAY_BUFFER
* beautiful stuff typechecks
* None support in shape
* hp tuning
* add back as_strided, move rebuilt mops to extra
* negative stride for ops_cpu
* Revert "negative stride for ops_cpu"
This reverts commit a13b6815ac31478d31ae71c26f4d4e4d274bf155.
* skip that
* style
* very close
* remove comment
* negative strides working
* almost everything passes
* calculate offset with list comprehension
* some cleanup
* got disk load working
* review suggestions
* fix after merge
* overlap working
* did it
* clean
* fixed disk load
* lint
* mypy
* removed as_strided
* trying without simplify
* added back simplify
* make sure expanding to smaller shape
* cleanup
* removed comment
* removed env file
* trying whisper test again
* onnx test sqlite issue
* working on test
* finished test
* eliminate unnecessary shrink-then-pad
* don't shrink buffer
* added strides check
* added to ci under linters
* switch issue
* allow symbolic stride
* removed .env
* isinstance
* adjust strides for double expand
* cleanup
* needed to add type hint for mypy
* set pythonpath
* metal indirect command buffers
* sub 1ms gpt
* metal batch exec is good
* remove whitespace
* input_replace
* fix ci
* useResources
* very simple cacheallocator
* update_stats
* fix CI
* minor
* remove that from jit
* refactor/ci: delete many `# type: ignore`
* replace `axis.__class__ is int` with `isinstance(axis, int)` to make mypy happy
* add `--warn-unused-ignores` to mypy flag
refs #2240
* ci: move `--warn-unused-ignores` flag to mypy config
refs #2240
* var_vals are global
* working with global ish
* better
* fix export model
* fix tests
* better kv cache
* does it run?
* use where for kvmask
* fix excessive var_vals
* fix import
* how does multigpu use this?
* llama kinda work
* faster and simpler
* cleanup
* fix conversation mode
* test cleanups
* fix one more test
* test cleanup
---------
Co-authored-by: George Hotz <geohot@gmail.com>