mirror of https://github.com/commaai/tinygrad.git
docs: showcase remove mnist_gan and add conversation.py (#4757)
fixed both examples, and i think it's better to show conversation
This commit is contained in:
parent
019f4680e5
commit
e614b7c696
|
@ -33,12 +33,6 @@ SMALL=1 python3 examples/whisper.py
|
|||
|
||||
## Generative
|
||||
|
||||
### Generative Adversarial Networks
|
||||
|
||||
Take a look at [mnist_gan.py](https://github.com/tinygrad/tinygrad/tree/master/examples/mnist_gan.py).
|
||||
|
||||
![mnist gan by tinygrad](https://github.com/tinygrad/tinygrad/blob/master/docs/showcase/mnist_by_tinygrad.jpg?raw=true)
|
||||
|
||||
### Stable Diffusion
|
||||
|
||||
```sh
|
||||
|
@ -57,3 +51,12 @@ Then you can have a chat with Stacy:
|
|||
```sh
|
||||
python3 examples/llama.py
|
||||
```
|
||||
|
||||
### Conversation
|
||||
|
||||
Make sure you have espeak installed and `PHONEMIZER_ESPEAK_LIBRARY` set.
|
||||
|
||||
Then you can talk to Stacy:
|
||||
```sh
|
||||
python3 examples/conversation.py
|
||||
```
|
||||
|
|
|
@ -88,6 +88,7 @@ if __name__ == "__main__":
|
|||
optim_g = optim.Adam(get_parameters(generator),lr=0.0002, b1=0.5) # 0.0002 for equilibrium!
|
||||
optim_d = optim.Adam(get_parameters(discriminator),lr=0.0002, b1=0.5)
|
||||
# training loop
|
||||
Tensor.training = True
|
||||
for epoch in (t := trange(epochs)):
|
||||
loss_g, loss_d = 0.0, 0.0
|
||||
for _ in range(n_steps):
|
||||
|
|
|
@ -487,7 +487,7 @@ def split(tensor, split_sizes, dim=0): # if split_sizes is an integer, convert
|
|||
slice_range = [(start, start + size) if j == dim else None for j in range(len(tensor.shape))]
|
||||
slices.append(slice_range)
|
||||
start += size
|
||||
return [tensor.slice(s) for s in slices]
|
||||
return [tensor._slice(s) for s in slices]
|
||||
def gather(x, indices, axis):
|
||||
indices = (indices < 0).where(indices + x.shape[axis], indices).transpose(0, axis)
|
||||
permute_args = list(range(x.ndim))
|
||||
|
|
|
@ -4,7 +4,7 @@ if "THREEFRY" not in os.environ: os.environ["THREEFRY"] = "1"
|
|||
|
||||
from tinygrad import Tensor, GlobalCounters
|
||||
|
||||
for N in [10, 100, 1_000, 10_000, 100_000, 1_000_000, 10_000_000, 100_000_000, 1_000_000_000]:
|
||||
for N in [10_000_000, 100_000_000, 1_000_000_000]:
|
||||
GlobalCounters.reset()
|
||||
Tensor.rand(N).realize()
|
||||
print(f"N {N:>20_}, global_ops {GlobalCounters.global_ops:>20_}, global_mem {GlobalCounters.global_mem:>20_}")
|
Loading…
Reference in New Issue