Unify test_dtype naming conventions (#4730)

This commit is contained in:
Szymon Ożóg 2024-05-25 16:12:40 +02:00 committed by GitHub
parent 7e90026eb0
commit de5c69c4c9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 11 additions and 11 deletions

View File

@ -189,7 +189,7 @@ class TestBFloat16DTypeCast(unittest.TestCase):
converted = random_values.cast(dtypes.bfloat16).cast(dtypes.float32)
np.testing.assert_allclose(converted.numpy(), random_values.cast(dtypes.float32).numpy(), rtol=1e-2, atol=1e-3)
class TestHalfDtype(TestDType): DTYPE = dtypes.half
class TestHalfDType(TestDType): DTYPE = dtypes.half
class TestFloatDType(TestDType):
DTYPE = dtypes.float
@ -198,7 +198,7 @@ class TestFloatDType(TestDType):
_test_op(lambda: Tensor([-0.9, -0.3, 1.2], dtype=dtypes.float32).cast(dtypes.uint32), dtypes.uint32,
[0, 0, 1])
class TestDoubleDtype(TestDType):
class TestDoubleDType(TestDType):
DTYPE = dtypes.double
@unittest.skipIf((CI and Device.DEFAULT in {"CUDA", "NV"}) or getenv("PTX"), "conversion not supported on CUDACPU and PTX") # TODO: why not?
def test_float64_increased_precision(self):
@ -222,7 +222,7 @@ class TestDoubleDtype(TestDType):
dtypes.float32, [float('inf'), 3.4e38, 1, 0])
class TestInt8Dtype(TestDType):
class TestInt8DType(TestDType):
DTYPE = dtypes.int8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_int8_to_uint8_negative(self):
@ -231,7 +231,7 @@ class TestInt8Dtype(TestDType):
def test_int8_to_uint16_negative(self):
_test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint16), dtypes.uint16, [2**16-1, 2**16-2, 2**16-3, 2**16-4])
class TestUint8Dtype(TestDType):
class TestUint8DType(TestDType):
DTYPE = dtypes.uint8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_uint8_to_int8_overflow(self):
@ -253,21 +253,21 @@ class TestBitCast(unittest.TestCase):
b = a.bitcast(dtypes.float32)
assert b.numpy()[0,0] == 1.
class TestInt16Dtype(TestDType): DTYPE = dtypes.int16
class TestInt16DType(TestDType): DTYPE = dtypes.int16
class TestUint16Dtype(TestDType):
class TestUint16DType(TestDType):
DTYPE = dtypes.uint16
def test_uint16_to_int8_overflow(self):
_test_op(lambda: Tensor([2**16-1, 2**16-2, 1, 0], dtype=dtypes.uint16).cast(dtypes.int8), dtypes.int8, [-1, -2, 1, 0])
class TestInt32Dtype(TestDType): DTYPE = dtypes.int32
class TestUint32Dtype(TestDType): DTYPE = dtypes.uint32
class TestInt32DType(TestDType): DTYPE = dtypes.int32
class TestUint32DType(TestDType): DTYPE = dtypes.uint32
class TestInt64Dtype(TestDType): DTYPE = dtypes.int64
class TestUint64Dtype(TestDType): DTYPE = dtypes.uint64
class TestInt64DType(TestDType): DTYPE = dtypes.int64
class TestUint64DType(TestDType): DTYPE = dtypes.uint64
class TestBoolDtype(TestDType): DTYPE = dtypes.bool
class TestBoolDType(TestDType): DTYPE = dtypes.bool
class TestImageDType(unittest.TestCase):
def test_image_scalar(self):