measure speed vs torch

This commit is contained in:
George Hotz 2022-10-10 16:06:00 -07:00
parent b7f748c15a
commit d54a45b50d
1 changed files with 53 additions and 0 deletions

View File

@ -0,0 +1,53 @@
import unittest
import torch
import time
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.nn import Conv2d
CNT = 5
class TestSpeedVTorch(unittest.TestCase):
def test_conv2d(self):
torch.manual_seed(0)
for bs in [32]:
for in_chans in [1,16,64]:
for out_chans in [128]:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
img_size = 64 if device == 'cuda' else 32
src = torch.rand(bs, in_chans, img_size, img_size)
dat = src.clone().to(device)
src_conv = torch.nn.Conv2d(in_chans, out_chans, 3)
conv = src_conv.to(device)
with torch.no_grad():
val_torch = conv(dat).cpu().numpy().sum()
ets_torch = []
for _ in range(CNT):
dat += 1
st = time.monotonic()
val_torch = conv(dat).cpu().numpy().sum()
et_torch = (time.monotonic() - st) * 1000
ets_torch.append(et_torch)
Tensor.no_grad = False
dat = Tensor(src.numpy())
conv = Conv2d(in_chans, out_chans, 3)
conv.weight = Tensor(src_conv.weight.detach().cpu().numpy())
conv.bias = Tensor(src_conv.bias.detach().cpu().numpy())
val_tinygrad = conv(dat).numpy().sum()
ets_tinygrad = []
for _ in range(CNT):
dat += 1
dat.realize()
st = time.monotonic()
val_tinygrad = conv(dat).numpy().sum()
et_tinygrad = (time.monotonic() - st) * 1000
ets_tinygrad.append(et_tinygrad)
et_torch = np.median(ets_torch)
et_tinygrad = np.median(ets_tinygrad)
print(f"bs:{bs:3d} chans:{in_chans:3d} -> {out_chans:3d} {et_torch:7.2f} ms in torch({device}), {et_tinygrad:7.2f} ms in tinygrad, {et_tinygrad/et_torch:7.2f}x slower", val_torch, val_tinygrad)
relative_error = abs((val_tinygrad-val_torch)/val_torch)
assert relative_error < 0.01
if __name__ == '__main__':
unittest.main()