mirror of https://github.com/commaai/tinygrad.git
beat mlx at resnet 18 (#6611)
* work to beat mlx at resnet18 [run_process_replay] * pruning * wino sometimes * shorter * comment
This commit is contained in:
parent
785aaec67c
commit
c4d5575c61
|
@ -0,0 +1,114 @@
|
|||
# code from https://x.com/awnihannun/status/1832511021602500796
|
||||
from huggingface_hub import snapshot_download
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import time
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, in_dims, dims, stride=1):
|
||||
super().__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False
|
||||
)
|
||||
self.bn1 = nn.BatchNorm(dims)
|
||||
|
||||
self.conv2 = nn.Conv2d(
|
||||
dims, dims, kernel_size=3, stride=1, padding=1, bias=False
|
||||
)
|
||||
self.bn2 = nn.BatchNorm(dims)
|
||||
|
||||
self.downsample = []
|
||||
if stride != 1:
|
||||
self.downsample = [
|
||||
nn.Conv2d(in_dims, dims, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm(dims)
|
||||
]
|
||||
|
||||
def __call__(self, x):
|
||||
out = nn.relu(self.bn1(self.conv1(x)))
|
||||
out = self.bn2(self.conv2(out))
|
||||
for l in self.downsample:
|
||||
x = l(x)
|
||||
out += x
|
||||
out = nn.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
def __init__(self, block, num_blocks, num_classes=10):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm(64)
|
||||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, 64, num_blocks[0], stride=1)
|
||||
self.layer2 = self._make_layer(block, 64, 128, num_blocks[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 128, 256, num_blocks[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 256, 512, num_blocks[3], stride=2)
|
||||
|
||||
self.fc = nn.Linear(512, num_classes)
|
||||
|
||||
def _make_layer(self, block, in_dims, dims, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(in_dims, dims, stride))
|
||||
in_dims = dims
|
||||
return layers
|
||||
|
||||
def __call__(self, x):
|
||||
x = nn.relu(self.bn1(self.conv1(x)))
|
||||
x = self.maxpool(x)
|
||||
for l in self.layer1 + self.layer2 + self.layer3 + self.layer4:
|
||||
x = l(x)
|
||||
x = mx.mean(x, axis=[1, 2])
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def load():
|
||||
model = ResNet(Block, [2, 2, 2, 2], num_classes=1000)
|
||||
file = "model.safetensors"
|
||||
model_path = snapshot_download(
|
||||
repo_id="awni/resnet18-mlx",
|
||||
allow_patterns=[file],
|
||||
)
|
||||
model.load_weights(model_path + "/" + file)
|
||||
model.eval()
|
||||
mx.eval(model)
|
||||
return model
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
resnet18 = load()
|
||||
|
||||
@mx.compile
|
||||
def forward(im):
|
||||
return resnet18(im)
|
||||
|
||||
batch_sizes = [1, 2, 4, 8, 16, 32, 64]
|
||||
#its = 200
|
||||
#batch_sizes = [64]
|
||||
its = 20
|
||||
print(f"Batch Size | Images-per-second | Milliseconds-per-image")
|
||||
print(f"---- | ---- | ---- ")
|
||||
for N in batch_sizes:
|
||||
image = mx.random.uniform(shape=(N, 288, 288, 3))
|
||||
|
||||
# Warmup
|
||||
for _ in range(5):
|
||||
output = forward(image)
|
||||
mx.eval(output)
|
||||
|
||||
tic = time.time()
|
||||
for _ in range(its):
|
||||
output = forward(image)
|
||||
mx.async_eval(output)
|
||||
mx.eval(output)
|
||||
toc = time.time()
|
||||
ims_per_sec = N * its / (toc - tic)
|
||||
ms_per_im = 1e3 / ims_per_sec
|
||||
print(f"{N} | {ims_per_sec:.3f} | {ms_per_im:.3f}")
|
|
@ -0,0 +1,110 @@
|
|||
from huggingface_hub import snapshot_download
|
||||
from tinygrad import nn, Tensor, TinyJit, Device, GlobalCounters, Context
|
||||
import time
|
||||
|
||||
class Block:
|
||||
def __init__(self, in_dims, dims, stride=1):
|
||||
super().__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False
|
||||
)
|
||||
self.bn1 = nn.BatchNorm(dims)
|
||||
|
||||
self.conv2 = nn.Conv2d(
|
||||
dims, dims, kernel_size=3, stride=1, padding=1, bias=False
|
||||
)
|
||||
self.bn2 = nn.BatchNorm(dims)
|
||||
|
||||
self.downsample = []
|
||||
if stride != 1:
|
||||
self.downsample = [
|
||||
nn.Conv2d(in_dims, dims, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm(dims)
|
||||
]
|
||||
|
||||
def __call__(self, x):
|
||||
out = self.bn1(self.conv1(x)).relu()
|
||||
out = self.bn2(self.conv2(out))
|
||||
for l in self.downsample:
|
||||
x = l(x)
|
||||
out += x
|
||||
return out.relu()
|
||||
|
||||
|
||||
class ResNet:
|
||||
def __init__(self, block, num_blocks, num_classes=10):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm(64)
|
||||
|
||||
self.layer1 = self._make_layer(block, 64, 64, num_blocks[0], stride=1)
|
||||
self.layer2 = self._make_layer(block, 64, 128, num_blocks[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 128, 256, num_blocks[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 256, 512, num_blocks[3], stride=2)
|
||||
|
||||
self.fc = nn.Linear(512, num_classes)
|
||||
|
||||
def _make_layer(self, block, in_dims, dims, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(in_dims, dims, stride))
|
||||
in_dims = dims
|
||||
return layers
|
||||
|
||||
def __call__(self, x:Tensor):
|
||||
x = self.bn1(self.conv1(x)).relu().max_pool2d()
|
||||
x = x.sequential(self.layer1)
|
||||
with Context(WINO=1): x = x.sequential(self.layer2 + self.layer3 + self.layer4)
|
||||
x = x.mean([2, 3])
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def load():
|
||||
model = ResNet(Block, [2, 2, 2, 2], num_classes=1000)
|
||||
file = "model.safetensors"
|
||||
model_path = snapshot_download(
|
||||
repo_id="awni/resnet18-mlx",
|
||||
allow_patterns=[file],
|
||||
)
|
||||
state = nn.state.safe_load(model_path + "/" + file)
|
||||
# mlx is NHWC, tinygrad is NCHW
|
||||
nn.state.load_state_dict(model, {k:v if len(v.shape) != 4 else v.to(None).permute(0,3,1,2).contiguous() for k,v in state.items()}, strict=False)
|
||||
return model
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
resnet18 = load()
|
||||
|
||||
@Tensor.test()
|
||||
def _forward(im): return resnet18(im)
|
||||
forward = TinyJit(_forward, prune=True)
|
||||
|
||||
batch_sizes = [1, 2, 4, 8, 16, 32, 64]
|
||||
#its = 200
|
||||
#batch_sizes = [64]
|
||||
its = 20
|
||||
print(f"Batch Size | Images-per-second | Milliseconds-per-image")
|
||||
print(f"---- | ---- | ---- ")
|
||||
for N in batch_sizes:
|
||||
forward.reset() # reset the JIT for a new batch size (could make automatic)
|
||||
image = Tensor.uniform(N, 3, 288, 288)
|
||||
|
||||
# Warmup
|
||||
for _ in range(5):
|
||||
GlobalCounters.reset()
|
||||
output = forward(image)
|
||||
Device.default.synchronize()
|
||||
|
||||
tic = time.time()
|
||||
for _ in range(its):
|
||||
GlobalCounters.reset()
|
||||
output = forward(image)
|
||||
Device.default.synchronize()
|
||||
toc = time.time()
|
||||
ims_per_sec = N * its / (toc - tic)
|
||||
ms_per_im = 1e3 / ims_per_sec
|
||||
print(f"{N} | {ims_per_sec:.3f} | {ms_per_im:.3f}")
|
Loading…
Reference in New Issue