mirror of https://github.com/commaai/tinygrad.git
Fuzz all permutations of schedule (#4136)
* simple toposort * fuzzer * init in_degree * move to tests * same seed * configure paths * internal graph * compare LazyBuffers * simpler * simple graph * assign works * simpler * fix JIT * upstream ci * move ci * fix the path * DEBUG=1 * limit max paths * launch a cmp kernel * Revert "launch a cmp kernel" This reverts commit 791c6089922fa7d800456f28fc167842f188ac7e. * exec ground truth * better perf * copy ground truth once * gpu allclose ast try1 * Revert "gpu allclose ast try1" This reverts commit 1f82103af3a7bfedb9f858b6c58b0b94f1c7e6b0. * prerealized bufs freezing * teeny cleanups * reuse Buffers * Revert "reuse Buffers" This reverts commit a71de94b035bd5ceb1ec257f6b2529b166bcd30b. --------- Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
This commit is contained in:
parent
4ed6b42a8a
commit
ba8602612b
|
@ -317,6 +317,8 @@ jobs:
|
|||
run: PYTHONPATH="." METAL=1 IGNORE_BEAM_CACHE=1 python3 -m pytest extra/optimization/test_beam_search.py
|
||||
- name: Fuzz Test linearizer
|
||||
run: PYTHONPATH="." METAL=1 CACHELEVEL=0 FUZZ_ALL_ACTIONS=1 DEPTH=2 FUZZ_N=48 FUZZ_MAX_SIZE=10000000 python test/external/fuzz_linearizer.py
|
||||
- name: Fuzz Test models schedule
|
||||
run: FUZZ_SCHEDULE=1 FUZZ_SCHEDULE_MAX_PATHS=5 python -m pytest test/models/test_train.py test/models/test_end2end.py
|
||||
|
||||
|
||||
# testwebgl:
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
import numpy as np
|
||||
from typing import DefaultDict, Dict, List, Set, TypeVar
|
||||
from tinygrad.buffer import Buffer
|
||||
from tinygrad.engine.realize import CustomOp, ExecItem, capturing, lower_schedule_item
|
||||
from tinygrad.helpers import DEBUG, colored, getenv
|
||||
from tinygrad.lazy import LazyBuffer
|
||||
from tinygrad.engine.schedule import _graph_schedule
|
||||
from tinygrad.ops import LoadOps, ScheduleItem
|
||||
from tinygrad.tensor import Tensor
|
||||
|
||||
def fuzz_schedule(outs: List[LazyBuffer]):
|
||||
graph, in_degree, prescheduled = _graph_schedule(outs, seen:=set())
|
||||
toposorts = find_all_toposorts(graph, in_degree)
|
||||
if DEBUG >= 1: print(colored(f"fuzzing {len(toposorts)} schedule permutations", "yellow"))
|
||||
|
||||
# setup ground truth
|
||||
ground_truth: Dict[LazyBuffer, memoryview] = {}
|
||||
# IMPORTANT: freeze prerealized bufs before ScheduleItem exec
|
||||
prerealized: Dict[LazyBuffer, memoryview] = {}
|
||||
seed = Tensor._seed
|
||||
for key in toposorts[0]:
|
||||
for out in (ps:=prescheduled[key]).outputs:
|
||||
seen.add(out)
|
||||
# freeze assign state before exec
|
||||
if out.op is LoadOps.ASSIGN: prerealized[out] = out.buffer.as_buffer()
|
||||
for x in ps.inputs:
|
||||
if x not in ground_truth and x.device != "NPY": prerealized[x] = x.buffer.as_buffer()
|
||||
si = ScheduleItem(ps.ast, tuple(x.buffer for x in ps.outputs if x.size != 0), tuple(x.buffer for x in ps.inputs if x.size != 0))
|
||||
_exec_si(si, seed)
|
||||
for out in ps.outputs: ground_truth[out] = out.buffer.as_buffer()
|
||||
|
||||
# exec and validate each permutation with new Buffers
|
||||
for i, ts in enumerate(toposorts[1:]):
|
||||
if DEBUG >= 1: print(colored(f"testing permutation {i}", "yellow"))
|
||||
rawbufs: Dict[LazyBuffer, Buffer] = {}
|
||||
for key in ts:
|
||||
for out in (ps:=prescheduled[key]).outputs:
|
||||
rawbufs[out] = Buffer(out.buffer.device, out.buffer.size, out.buffer.dtype)
|
||||
if out.op is LoadOps.ASSIGN: rawbufs[out].ensure_allocated().copyin(prerealized[out])
|
||||
for x in ps.inputs:
|
||||
if x not in rawbufs:
|
||||
if x.device == "NPY": rawbufs[x] = x.buffer
|
||||
# copy the pre realized input
|
||||
else: rawbufs[x] = Buffer(x.buffer.device, x.buffer.size, x.buffer.dtype, initial_value=prerealized[x])
|
||||
si = ScheduleItem(ps.ast, tuple(rawbufs[x] for x in ps.outputs if x.size != 0), tuple(rawbufs[x] for x in ps.inputs if x.size != 0))
|
||||
_exec_si(si, seed)
|
||||
for out in ps.outputs:
|
||||
outbuf = np.frombuffer(rawbufs[out].as_buffer(), out.dtype.np)
|
||||
try: np.testing.assert_allclose(outbuf, np.frombuffer(ground_truth[out], out.dtype.np), atol=1e-2, rtol=1e-2)
|
||||
except Exception as e:
|
||||
print(f"FAILED FOR {out}")
|
||||
raise e
|
||||
|
||||
def _exec_si(si: ScheduleItem, seed:int):
|
||||
ei = ExecItem(lower_schedule_item(si), list(si.outputs+si.inputs))
|
||||
if len(capturing): capturing[0].add(ei)
|
||||
if isinstance(ei.prg, CustomOp): Tensor._seed = seed
|
||||
ei.run()
|
||||
|
||||
T = TypeVar("T")
|
||||
def find_all_toposorts(graph:DefaultDict[T, List[T]], in_degree:DefaultDict[T, int]) -> List[List[T]]:
|
||||
visited: Set[T] = set()
|
||||
ret: List[List[T]] = []
|
||||
path: List[T] = []
|
||||
|
||||
def recurse_paths(path:List[T]):
|
||||
for v, d in in_degree.items():
|
||||
if d != 0 or v in visited: continue
|
||||
for u in graph[v]: in_degree[u] -= 1
|
||||
path.append(v)
|
||||
visited.add(v)
|
||||
recurse_paths(path)
|
||||
if len(ret) >= getenv("FUZZ_SCHEDULE_MAX_PATHS", 10): return
|
||||
# backtrack
|
||||
for u in graph[v]: in_degree[u] += 1
|
||||
path.pop()
|
||||
visited.remove(v)
|
||||
if len(path) == len(in_degree): ret.append([*path])
|
||||
recurse_paths(path)
|
||||
|
||||
if len(ret) == 0: raise RuntimeError("detected cycle in the graph")
|
||||
# verify all paths are unique
|
||||
assert len(ret) == len(set(map(tuple, ret)))
|
||||
return ret
|
|
@ -58,4 +58,4 @@ class Buffer:
|
|||
mv = flat_mv(mv)
|
||||
assert len(mv) == self.nbytes, f"size mismatch, {len(mv)=} != {self.dtype=} {self.size=}"
|
||||
self.allocator.copyout(mv, self._buf)
|
||||
return mv
|
||||
return mv
|
||||
|
|
|
@ -128,9 +128,8 @@ def _is_padding_okay(buf:LazyBuffer, realizes:Dict[LazyBuffer, None]) -> bool:
|
|||
if buf.op in UNSAFE_PAD_OPS: return False
|
||||
return all(_is_padding_okay(x.base, realizes) for x in buf.srcs)
|
||||
|
||||
def create_schedule_with_vars(outs:List[LazyBuffer], seen:Optional[Set[LazyBuffer]]=None) -> Tuple[List[ScheduleItem], Dict[Variable, int]]:
|
||||
if seen is None: seen = set()
|
||||
|
||||
def _graph_schedule(outs:List[LazyBuffer], seen:Set[LazyBuffer]) -> Tuple[DefaultDict[LazyBuffer, List[LazyBuffer]], DefaultDict[LazyBuffer, int],
|
||||
Dict[LazyBuffer, _LBScheduleItem]]:
|
||||
# start by just realizing the buffers passed in
|
||||
realizes: Dict[LazyBuffer, None] = {x.base: None for x in outs if not x.base.realized}
|
||||
allbufs: Dict[LazyBuffer, None] = {}
|
||||
|
@ -209,6 +208,7 @@ def create_schedule_with_vars(outs:List[LazyBuffer], seen:Optional[Set[LazyBuffe
|
|||
graph: DefaultDict[LazyBuffer, List[LazyBuffer]] = defaultdict(list)
|
||||
in_degree: DefaultDict[LazyBuffer, int] = defaultdict(int)
|
||||
for key, lsi in prescheduled.items():
|
||||
if key not in in_degree: in_degree[key] = 0
|
||||
# realize outputs after all parents are realized
|
||||
scheduled_parents = set(schedule_targets[x].outputs[0] for x in lsi.inputs if x in schedule_targets)
|
||||
for x in scheduled_parents:
|
||||
|
@ -221,6 +221,11 @@ def create_schedule_with_vars(outs:List[LazyBuffer], seen:Optional[Set[LazyBuffe
|
|||
in_degree[assign] += 1
|
||||
for out in lsi.outputs: del out.srcs # can only schedule once
|
||||
|
||||
return graph, in_degree, prescheduled
|
||||
|
||||
def create_schedule_with_vars(outs:List[LazyBuffer], seen:Optional[Set[LazyBuffer]]=None) -> Tuple[List[ScheduleItem], Dict[Variable, int]]:
|
||||
if seen is None: seen = set()
|
||||
graph, in_degree, prescheduled = _graph_schedule(outs, seen)
|
||||
queue = deque(si for key, si in prescheduled.items() if in_degree[key] == 0)
|
||||
schedule: List[ScheduleItem] = []
|
||||
var_vals: Dict[Variable, int] = {}
|
||||
|
|
|
@ -8,6 +8,7 @@ import numpy as np
|
|||
|
||||
from tinygrad.dtype import DType, dtypes, ImageDType, ConstType, least_upper_float, least_upper_dtype
|
||||
from tinygrad.helpers import argfix, make_pair, flatten, prod, all_int, round_up, merge_dicts, fully_flatten, argsort, IMAGE, DEBUG, WINO, THREEFRY
|
||||
from tinygrad.helpers import getenv
|
||||
from tinygrad.lazy import LazyBuffer
|
||||
from tinygrad.features.multi import MultiLazyBuffer
|
||||
from tinygrad.ops import LoadOps
|
||||
|
@ -141,6 +142,9 @@ class Tensor:
|
|||
|
||||
@staticmethod
|
||||
def corealize(lst:Iterable[Tensor]):
|
||||
if getenv("FUZZ_SCHEDULE"):
|
||||
from test.external.fuzz_schedule import fuzz_schedule
|
||||
fuzz_schedule(flatten([x.lazydata.lbs for x in lst]))
|
||||
run_schedule(*create_schedule_with_vars(flatten([x.lazydata.lbs for x in lst])))
|
||||
|
||||
def realize(self) -> Tensor:
|
||||
|
|
Loading…
Reference in New Issue