names shadowing builtins (#5179)

Co-authored-by: chenyu <chenyu@fastmail.com>
This commit is contained in:
Roelof van Dijk 2024-06-27 14:15:01 +02:00 committed by GitHub
parent 26e254c42b
commit 975b811ad9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 18 additions and 17 deletions

View File

@ -26,6 +26,7 @@ lint.select = [
"C416", # unnecessary-comprehension
"RET506", # superfluous-else-raise
"RET507", # superfluous-else-continue
"A", # builtin-variable-shadowing, builtin-argument-shadowing, builtin-attribute-shadowing
]
line-length = 150

View File

@ -25,7 +25,7 @@ class CLCache:
capturing.append(self)
print("cache: entering")
return self
def __exit__(self, type, value, traceback):
def __exit__(self, _type, value, traceback):
capturing.clear()
print(f"cache: exiting with size {self.count}", f"allowed {self.allowed}" if self.allowed is not None else "")
if self.allowed is not None:

View File

@ -51,12 +51,12 @@ def run_evaluation(model_name, tinygrad_expected_wer, reference_wer):
class LibriSpeech(torch.utils.data.Dataset):
def __init__(self):
dir = pathlib.Path(__file__).parent.parent.parent / "extra" / "datasets" / "librispeech"
if not os.path.exists(dir):
os.makedirs(dir)
folder = pathlib.Path(__file__).parent.parent.parent / "extra" / "datasets" / "librispeech"
if not os.path.exists(folder):
os.makedirs(folder)
self.dataset = torchaudio.datasets.LIBRISPEECH(
root=dir,
root=folder,
url="test-clean",
download=True,
)

View File

@ -16,14 +16,14 @@ class TestNN(unittest.TestCase):
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "no int64 on WebGPU")
def test_sparse_cat_cross_entropy(self):
# create in tinygrad
input = Tensor.randn(5, 5)
input_tensor = Tensor.randn(5, 5)
target = Tensor([0, 0, 0, 1, 2]) # torch doesn't support target=-1
torch_input = torch.tensor(input.numpy())
torch_input = torch.tensor(input_tensor.numpy())
torch_target = torch.tensor(target.numpy(), dtype=torch.long)
for smoothing in [0.0, 0.1, 0.5, 1.0]:
for ignore_index in [-1, 0, 2]:
loss = input.sparse_categorical_crossentropy(target, label_smoothing=smoothing, ignore_index=ignore_index)
loss = input_tensor.sparse_categorical_crossentropy(target, label_smoothing=smoothing, ignore_index=ignore_index)
torch_loss = torch.nn.CrossEntropyLoss(reduction='mean', label_smoothing=smoothing, ignore_index=ignore_index)(torch_input, torch_target)
np.testing.assert_allclose(loss.numpy(), torch_loss.detach().numpy(), atol=1e-5, rtol=1e-6)

View File

@ -12,10 +12,10 @@ from tinygrad.engine.realize import CompiledRunner, lower_schedule_item
from tinygrad.codegen.uops import UOps, UOp, UOpGraph
from test.helpers import is_dtype_supported
def _uops_to_prg(uops_list, print=False):
def _uops_to_prg(uops_list, print_uops=False):
uops = UOpGraph(uops_list)
src = Device[Device.DEFAULT].renderer.render("test", uops)
if print: uops.print()
if print_uops: uops.print()
has_local = Device[Device.DEFAULT].renderer.has_local
return CompiledRunner(Program("test", src, Device.DEFAULT, [1,1,1] if has_local else None, [1,1,1] if has_local else None, uops=uops))
@ -59,7 +59,7 @@ def _test_uops_result(output_dtype, uops, res):
# res = output_fn(uops)
out = uop(uops, UOps.STORE, None, (buf_store, uop(uops, UOps.CONST, dtypes.int32, (), 0), res))
buf = Buffer(Device.DEFAULT, 1, output_dtype).allocate()
prg = _uops_to_prg([out], print=True)
prg = _uops_to_prg([out], print_uops=True)
prg.exec([buf])
ret = np.empty(1, _to_np_dtype(output_dtype))
buf.copyout(ret.data)

View File

@ -31,9 +31,9 @@ class TextModelExport(unittest.TestCase):
def test_multi_output_model_export(self):
model = MockMultiOutputModel()
input = Tensor.rand(2,2)
outputs = model(input)
prg, _, out_sizes, _ = export_model(model, "", input)
input_tensor = Tensor.rand(2,2)
outputs = model(input_tensor)
prg, _, out_sizes, _ = export_model(model, "", input_tensor)
prg = json.loads(prg)
assert len(outputs) == len(prg["outputs"]) == len(out_sizes), f"Model and exported outputs don't match: mdl={len(outputs)}, prg={len(prg['outputs'])}, inp_sizes={len(out_sizes)}" # noqa: E501

View File

@ -7,10 +7,10 @@ from tinygrad.shape.symbolic import Variable, NumNode
from itertools import product
def shapetracker_getitem(st, val):
locals = {"idx0": val, "valid": 1}
_locals = {"idx0": val, "valid": 1}
idx, valid = st.reshape((st.size,)).expr_idxs()
exec(f"valid={valid.render()};idx0={idx.render()}", None, locals)
return locals["idx0"] if locals["valid"] else -1
exec(f"valid={valid.render()};idx0={idx.render()}", None, _locals)
return _locals["idx0"] if _locals["valid"] else -1
class CheckingShapeTracker:
def __init__(self, shape):