mirror of https://github.com/commaai/tinygrad.git
more enet
This commit is contained in:
parent
41828d768f
commit
9166eb58bb
|
@ -3,6 +3,7 @@
|
||||||
# https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth
|
# https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth
|
||||||
# a rough copy of
|
# a rough copy of
|
||||||
# https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py
|
# https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py
|
||||||
|
from tinygrad.tensor import Tensor
|
||||||
|
|
||||||
class BatchNorm2D:
|
class BatchNorm2D:
|
||||||
def __init__(self, sz):
|
def __init__(self, sz):
|
||||||
|
@ -15,12 +16,16 @@ class BatchNorm2D:
|
||||||
return x * self.weight + self.bias
|
return x * self.weight + self.bias
|
||||||
|
|
||||||
class MBConvBlock:
|
class MBConvBlock:
|
||||||
def __init__(self, input_filters, expand_ratio, se_ratio, output_filters):
|
def __init__(self, kernel_size, strides, expand_ratio, input_filters, output_filters, se_ratio):
|
||||||
oup = expand_ratio * input_filters
|
oup = expand_ratio * input_filters
|
||||||
if expand_ratio != 1:
|
if expand_ratio != 1:
|
||||||
self._expand_conv = Tensor.zeros(oup, input_filters, 1, 1)
|
self._expand_conv = Tensor.zeros(oup, input_filters, 1, 1)
|
||||||
self._bn0 = BatchNorm2D(oup)
|
self._bn0 = BatchNorm2D(oup)
|
||||||
self._depthwise_conv = Tensor.zeros(oup, 1, 3, 3)
|
|
||||||
|
self.pad = (kernel_size-1)//2
|
||||||
|
self.strides = strides
|
||||||
|
|
||||||
|
self._depthwise_conv = Tensor.zeros(oup, 1, kernel_size, kernel_size)
|
||||||
self._bn1 = BatchNorm2D(oup)
|
self._bn1 = BatchNorm2D(oup)
|
||||||
|
|
||||||
num_squeezed_channels = max(1, int(input_filters * se_ratio))
|
num_squeezed_channels = max(1, int(input_filters * se_ratio))
|
||||||
|
@ -34,7 +39,8 @@ class MBConvBlock:
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
x = self._bn0(x.conv2d(self._expand_conv)).swish()
|
x = self._bn0(x.conv2d(self._expand_conv)).swish()
|
||||||
x = self._bn1(x.conv2d(self._depthwise_conv)).swish() # TODO: repeat on axis 1
|
x = x.pad(self.pad, self.pad, self.pad, self.pad)
|
||||||
|
x = self._bn1(x.conv2d(self._depthwise_conv, stride=self.stride)).swish() # TODO: repeat on axis 1
|
||||||
|
|
||||||
# has_se
|
# has_se
|
||||||
x_squeezed = x.avg_pool2d()
|
x_squeezed = x.avg_pool2d()
|
||||||
|
@ -49,9 +55,20 @@ class EfficientNet:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self._conv_stem = Tensor.zeros(32, 3, 3, 3)
|
self._conv_stem = Tensor.zeros(32, 3, 3, 3)
|
||||||
self._bn0 = BatchNorm2D(32)
|
self._bn0 = BatchNorm2D(32)
|
||||||
|
blocks_args = [
|
||||||
|
[1, 3, (1,1), 1, 32, 16, 0.25],
|
||||||
|
[2, 3, (2,2), 6, 16, 24, 0.25],
|
||||||
|
[2, 5, (2,2), 6, 24, 40, 0.25],
|
||||||
|
[3, 3, (2,2), 6, 40, 80, 0.25],
|
||||||
|
[3, 5, (1,1), 6, 80, 112, 0.25],
|
||||||
|
[4, 5, (1,1), 6, 112, 192, 0.25],
|
||||||
|
[1, 3, (1,1), 6, 192, 320, 0.25],
|
||||||
|
]
|
||||||
self._blocks = []
|
self._blocks = []
|
||||||
# TODO: create blocks
|
# num_repeats, kernel_size, strides, expand_ratio, input_filters, output_filters, se_ratio
|
||||||
|
for b in blocks_args:
|
||||||
|
for n in range(b[0]):
|
||||||
|
self._blocks.append(MBConvBlock(*b[1:]))
|
||||||
self._conv_head = Tensor.zeros(1280, 320, 1, 1)
|
self._conv_head = Tensor.zeros(1280, 320, 1, 1)
|
||||||
self._bn1 = BatchNorm2D(1280)
|
self._bn1 = BatchNorm2D(1280)
|
||||||
self._fc = Tensor.zeros(1280, 1000)
|
self._fc = Tensor.zeros(1280, 1000)
|
||||||
|
@ -65,3 +82,6 @@ class EfficientNet:
|
||||||
x = x.dropout(0.2)
|
x = x.dropout(0.2)
|
||||||
return x.dot(self_fc).swish()
|
return x.dot(self_fc).swish()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
model = EfficientNet()
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue