Add yolov8 implementation (#806)

* added SPPF module from yolov8

* added conv_block, bottleneck modules

* cleaned modules

* c2f example

* spf changes

* C2f

* fixed and tested bottleneck

* improved detect class

* tested spf and conv

* checked c2f

* DFL structure

* fixed dfl

* added dist2bbox function

* added dist2bbox function

* added and tested make_anchors function for the head

* keeping functions above

* creating the detection head

* fixing head

* untested blocks a. scale_boxes b. clip_boxes c. xywh2xyxy d. box_iou

* head works

* structure fixx

* added darknet (backbone)

* yolov8 neck, and intialize bias function while detection

* fixed spacing

* yolov8 class, init bias, and fixed c2f

* forward pass almost working

* fixed net structure

* init bias not needed, forward pass working

* load weights boilerplate

* load weights done?

* all variants loading!

* post process: clip_boxes, scale_boxes, xywh2xyxy, and box_iou(untested)

* fix scale_boxes

* box_iou fixed and tested

* created the pre nms function

* fix nms

* fixed load weights, apparently the latest commit broke something, excluding num_batches_tracked

* added letterbox and pre_tranform for pre_process function

* fixed letterbox, pre_transform and added preprocess function

* custom NMS done, integrated prepare_boxes and nms, improved box_iou

* added postprocess function till parsing

* added draw_bounding_boxes_and_save function

* testing full flow

* using fetch for class names

* fixed make_anchors + all tinygrad now

* added command line arguments, weight downloading

* single image for now only

* made draw boxes more efficient

* made NMS functions efficient

* made compute_transform better

* v8 working now, inference is done

* prints objects detected in console now

* fixed image loading (pre processing)

* batch post processing

* created initial tests

* fixes bounding box thickness AND added get_detected_classes_with_frequency function

* cleaning for testing

* two tests

* added url option for image, removed need for specifiying arguments

* tests complete, but lots on things are printed on screen by ultralytics

* remove parse arguments

* fixed weight location

* fixed colours of classes, and black font when high brightness

* minor changes

* TODOs for later

* removed use of torch, using .npz weights

* fixed tests

* one path for fetch

* preprocess now in tinygrad, plus test fix for that

* updated tests

* fix tests

* no class labels needed

* Add files via upload

* Update showcase.md

* Update showcase.md

* added safe tensors as weights, and tests fix for that

* safe tensors test

* using safe_load

* using tinygrad functions now to load weights

* update tests

---------

Co-authored-by: r3sist-uniq <amanmatreja@gmail.com>
Co-authored-by: r3sist <72573738+r3sist-uniq@users.noreply.github.com>
This commit is contained in:
sehaj 2023-06-17 07:25:19 +05:30 committed by GitHub
parent fe71282ba1
commit 775287ed91
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 534 additions and 18 deletions

View File

@ -15,11 +15,11 @@ Or, if you have a camera and OpenCV installed, you can detect what is in front o
python3 examples/efficientnet.py webcam
```
### YOLOv3
### YOLOv8
Take a look at [yolov3.py](/examples/yolov3.py).
Take a look at [yolov8.py](/examples/yolov8.py).
![yolo by tinygrad](/docs/showcase/yolo_by_tinygrad.jpg)
![yolov8 by tinygrad](/docs/showcase/yolov8_showcase_image.png)
## Audio

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

17
examples/yolov8-onnx.py Normal file
View File

@ -0,0 +1,17 @@
#!/usr/bin/env python3
import os
from ultralytics import YOLO
import onnx
from extra.onnx import get_run_onnx
from tinygrad.tensor import Tensor
os.chdir("/tmp")
if not os.path.isfile("yolov8n-seg.onnx"):
model = YOLO("yolov8n-seg.pt")
model.export(format="onnx", imgsz=[480,640])
onnx_model = onnx.load(open("yolov8n-seg.onnx", "rb"))
# TODO: move get example inputs to onnx
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
print(input_shapes)
run_onnx = get_run_onnx(onnx_model)
run_onnx({"images": Tensor.zeros(1,3,480,640)}, debug=True)

View File

@ -1,17 +1,439 @@
#!/usr/bin/env python3
import os
from ultralytics import YOLO
import onnx
from extra.onnx import get_run_onnx
from tinygrad.nn import Conv2d, BatchNorm2d
from tinygrad.tensor import Tensor
import numpy as np
from itertools import chain
from extra.utils import get_child, fetch, download_file
from pathlib import Path
import cv2
from collections import defaultdict
import os
import time, io, sys
from tinygrad.state import safe_load, load_state_dict
os.chdir("/tmp")
if not os.path.isfile("yolov8n-seg.onnx"):
model = YOLO("yolov8n-seg.pt")
model.export(format="onnx", imgsz=[480,640])
onnx_model = onnx.load(open("yolov8n-seg.onnx", "rb"))
# TODO: move get example inputs to onnx
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
print(input_shapes)
run_onnx = get_run_onnx(onnx_model)
run_onnx({"images": Tensor.zeros(1,3,480,640)}, debug=True)
#Model architecture from https://github.com/ultralytics/ultralytics/issues/189
#The upsampling class has been taken from this pull request https://github.com/geohot/tinygrad/pull/784 by dc-dc-dc. Now 2(?) models use upsampling. (retinet and this)
#Pre processing image functions.
def compute_transform(image, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32):
shape = image.shape[:2] # current shape [height, width]
new_shape = (new_shape, new_shape) if isinstance(new_shape, int) else new_shape
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
r = min(r, 1.0) if not scaleup else r
new_unpad = (int(round(shape[1] * r)), int(round(shape[0] * r)))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
dw, dh = (np.mod(dw, stride), np.mod(dh, stride)) if auto else (0.0, 0.0)
new_unpad = (new_shape[1], new_shape[0]) if scaleFill else new_unpad
dw /= 2
dh /= 2
image = cv2.resize(image, new_unpad, interpolation=cv2.INTER_LINEAR) if shape[::-1] != new_unpad else image
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
return image
def preprocess(im, imgsz=640, model_stride=32, model_pt=True):
same_shapes = all(x.shape == im[0].shape for x in im)
auto = same_shapes and model_pt
im = Tensor([compute_transform(x, new_shape=imgsz, auto=auto, stride=model_stride) for x in im])
im = Tensor.stack(im) if im.shape[0] > 1 else im
im = im[..., ::-1].permute(0, 3, 1, 2) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im /= 255 # 0 - 255 to 0.0 - 1.0
return im
# Post Processing functions
def box_area(box):
return (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])
def box_iou(box1, box2):
lt = np.maximum(box1[:, None, :2], box2[:, :2])
rb = np.minimum(box1[:, None, 2:], box2[:, 2:])
wh = np.clip(rb - lt, 0, None)
inter = wh[:, :, 0] * wh[:, :, 1]
area1 = box_area(box1)[:, None]
area2 = box_area(box2)[None, :]
iou = inter / (area1 + area2 - inter)
return iou
def compute_nms(boxes, scores, iou_threshold):
order, keep = scores.argsort()[::-1], []
while order.size > 0:
i = order[0]
keep.append(i)
if order.size == 1:
break
iou = box_iou(boxes[i][None, :], boxes[order[1:]])
inds = np.where(iou.squeeze() <= iou_threshold)[0]
order = order[inds + 1]
return np.array(keep)
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, agnostic=False, max_det=300, nc=0, max_wh=7680):
prediction = prediction[0] if isinstance(prediction, (list, tuple)) else prediction
bs, nc = prediction.shape[0], nc or (prediction.shape[1] - 4)
xc = np.amax(prediction[:, 4:4 + nc], axis=1) > conf_thres
nm = prediction.shape[1] - nc - 4
output = [np.zeros((0, 6 + nm))] * bs
for xi, x in enumerate(prediction):
x = x.swapaxes(0, -1)[xc[xi]]
if not x.shape[0]: continue
box, cls, mask = np.split(x, [4, 4 + nc], axis=1)
conf, j = np.max(cls, axis=1, keepdims=True), np.argmax(cls, axis=1, keepdims=True)
x = np.concatenate((xywh2xyxy(box), conf, j.astype(np.float32), mask), axis=1)
x = x[conf.ravel() > conf_thres]
if not x.shape[0]: continue
x = x[np.argsort(-x[:, 4])]
c = x[:, 5:6] * (0 if agnostic else max_wh)
boxes, scores = x[:, :4] + c, x[:, 4]
i = compute_nms(boxes, scores, iou_thres)[:max_det]
output[xi] = x[i]
return output
def postprocess(preds, img, orig_imgs):
print('copying to CPU now for post processing')
#if you are on CPU, this causes an overflow runtime error. doesn't "seem" to make any difference in the predictions though.
# TODO: make non_max_suppression in tinygrad - to make this faster
preds = preds.cpu().numpy() if isinstance(preds, Tensor) else preds
preds = non_max_suppression(prediction=preds, conf_thres=0.25, iou_thres=0.7, agnostic=False, max_det=300)
all_preds = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
if not isinstance(orig_imgs, Tensor):
pred[:, :4] = scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
all_preds.append(pred)
return all_preds
def draw_bounding_boxes_and_save(orig_img_paths, output_img_paths, all_predictions, class_labels, iou_threshold=0.5):
color_dict = {label: tuple((((i+1) * 50) % 256, ((i+1) * 100) % 256, ((i+1) * 150) % 256)) for i, label in enumerate(class_labels)}
font = cv2.FONT_HERSHEY_SIMPLEX
def is_bright_color(color):
r, g, b = color
brightness = (r * 299 + g * 587 + b * 114) / 1000
return brightness > 127
for img_idx, (orig_img_path, output_img_path, predictions) in enumerate(zip(orig_img_paths, output_img_paths, all_predictions)):
predictions = np.array(predictions)
orig_img = cv2.imread(orig_img_path) if not isinstance(orig_img_path, np.ndarray) else cv2.imdecode(orig_img_path, 1)
height, width, _ = orig_img.shape
box_thickness = int((height + width) / 400)
font_scale = (height + width) / 2500
grouped_preds = defaultdict(list)
object_count = defaultdict(int)
for pred_np in predictions:
grouped_preds[int(pred_np[-1])].append(pred_np)
def draw_box_and_label(pred, color):
x1, y1, x2, y2, conf, _ = pred
x1, y1, x2, y2 = map(int, (x1, y1, x2, y2))
cv2.rectangle(orig_img, (x1, y1), (x2, y2), color, box_thickness)
label = f"{class_labels[class_id]} {conf:.2f}"
text_size, _ = cv2.getTextSize(label, font, font_scale, 1)
label_y, bg_y = (y1 - 4, y1 - text_size[1] - 4) if y1 - text_size[1] - 4 > 0 else (y1 + text_size[1], y1)
cv2.rectangle(orig_img, (x1, bg_y), (x1 + text_size[0], bg_y + text_size[1]), color, -1)
font_color = (0, 0, 0) if is_bright_color(color) else (255, 255, 255)
cv2.putText(orig_img, label, (x1, label_y), font, font_scale, font_color, 1, cv2.LINE_AA)
for class_id, pred_list in grouped_preds.items():
pred_list = np.array(pred_list)
while len(pred_list) > 0:
max_conf_idx = np.argmax(pred_list[:, 4])
max_conf_pred = pred_list[max_conf_idx]
pred_list = np.delete(pred_list, max_conf_idx, axis=0)
color = color_dict[class_labels[class_id]]
draw_box_and_label(max_conf_pred, color)
object_count[class_labels[class_id]] += 1
iou_scores = box_iou(np.array([max_conf_pred[:4]]), pred_list[:, :4])
low_iou_indices = np.where(iou_scores[0] < iou_threshold)[0]
pred_list = pred_list[low_iou_indices]
for low_conf_pred in pred_list:
draw_box_and_label(low_conf_pred, color)
print(f"Image {img_idx + 1}:")
print("Objects detected:")
for obj, count in object_count.items():
print(f"- {obj}: {count}")
cv2.imwrite(output_img_path, orig_img)
print(f'saved detections at {output_img_path}')
# utility functions for forward pass.
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
lt, rb = distance.chunk(2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return c_xy.cat(wh, dim=1)
return x1y1.cat(x2y2, dim=1)
def make_anchors(feats, strides, grid_cell_offset=0.5):
anchor_points, stride_tensor = [], []
assert feats is not None
for i, stride in enumerate(strides):
_, _, h, w = feats[i].shape
sx = Tensor.arange(stop=w) + grid_cell_offset
sy = Tensor.arange(stop=h) + grid_cell_offset
# this is np.meshgrid but in tinygrad
sx = sx.reshape(1, -1).repeat([h, 1]).reshape(-1)
sy = sy.reshape(-1, 1).repeat([1, w]).reshape(-1)
anchor_points.append(Tensor.stack((sx, sy), -1).reshape(-1, 2))
stride_tensor.append(Tensor.full((h * w), stride))
anchor_points = anchor_points[0].cat(anchor_points[1], anchor_points[2])
stride_tensor = stride_tensor[0].cat(stride_tensor[1], stride_tensor[2]).unsqueeze(1)
return anchor_points, stride_tensor
# this function is from the original implementation
def autopad(k, p=None, d=1): # kernel, padding, dilation
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
def clip_boxes(boxes, shape):
boxes[..., [0, 2]] = np.clip(boxes[..., [0, 2]], 0, shape[1]) # x1, x2
boxes[..., [1, 3]] = np.clip(boxes[..., [1, 3]], 0, shape[0]) # y1, y2
return boxes
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
gain = ratio_pad if ratio_pad else min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
pad = ((img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2)
boxes_np = boxes.numpy() if isinstance(boxes, Tensor) else boxes
boxes_np[..., [0, 2]] -= pad[0]
boxes_np[..., [1, 3]] -= pad[1]
boxes_np[..., :4] /= gain
boxes_np = clip_boxes(boxes_np, img0_shape)
return boxes_np
def xywh2xyxy(x):
xy = x[..., :2] # center x, y
wh = x[..., 2:4] # width, height
xy1 = xy - wh / 2 # top left x, y
xy2 = xy + wh / 2 # bottom right x, y
result = np.concatenate((xy1, xy2), axis=-1)
return Tensor(result) if isinstance(x, Tensor) else result
def get_variant_multiples(variant):
return {'n':(0.33, 0.25, 2.0), 's':(0.33, 0.50, 2.0), 'm':(0.67, 0.75, 1.5), 'l':(1.0, 1.0, 1.0), 'x':(1, 1.25, 1.0) }.get(variant, None)
def label_predictions(all_predictions):
class_index_count = defaultdict(int)
for predictions in all_predictions:
predictions = np.array(predictions)
for pred_np in predictions:
class_id = int(pred_np[-1])
class_index_count[class_id] += 1
return dict(class_index_count)
#this is taken from https://github.com/geohot/tinygrad/pull/784/files by dc-dc-dc (Now 2 models use upsampling)
class Upsample:
def __init__(self, scale_factor:int, mode: str = "nearest") -> None:
assert mode == "nearest" # only mode supported for now
self.mode = mode
self.scale_factor = scale_factor
def __call__(self, x: Tensor) -> Tensor:
assert len(x.shape) > 2 and len(x.shape) <= 5
(b, c), _lens = x.shape[:2], len(x.shape[2:])
tmp = x.reshape([b, c, -1] + [1] * _lens) * Tensor.ones(*[1, 1, 1] + [self.scale_factor] * _lens)
return tmp.reshape(list(x.shape) + [self.scale_factor] * _lens).permute([0, 1] + list(chain.from_iterable([[y+2, y+2+_lens] for y in range(_lens)]))).reshape([b, c] + [x * self.scale_factor for x in x.shape[2:]])
class Conv_Block():
def __init__(self, c1, c2, kernel_size=1, stride=1, groups=1, dilation=1, padding=None):
self.conv = Conv2d(c1,c2, kernel_size, stride, padding=autopad(kernel_size, padding, dilation), bias=False, groups=groups, dilation=dilation)
self.bn = BatchNorm2d(c2, eps=0.001)
def __call__(self, x):
return self.bn(self.conv(x)).silu()
class Bottleneck:
def __init__(self, c1, c2 , shortcut: bool, g=1, kernels: list = (3,3), channel_factor=0.5):
c_ = int(c2 * channel_factor)
self.cv1 = Conv_Block(c1, c_, kernel_size=kernels[0], stride=1, padding=None)
self.cv2 = Conv_Block(c_, c2, kernel_size=kernels[1], stride=1, padding=None, groups=g)
self.residual = c1 == c2 and shortcut
def __call__(self, x):
return x + self.cv2(self.cv1(x)) if self.residual else self.cv2(self.cv1(x))
class C2f:
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
self.c = int(c2 * e)
self.cv1 = Conv_Block(c1, 2 * self.c, 1,)
self.cv2 = Conv_Block((2 + n) * self.c, c2, 1)
self.bottleneck = [Bottleneck(self.c, self.c, shortcut, g, kernels=[(3, 3), (3, 3)], channel_factor=1.0) for _ in range(n)]
def __call__(self, x):
y= list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.bottleneck)
z = y[0]
for i in y[1:]: z = z.cat(i, dim=1)
return self.cv2(z)
class SPPF:
def __init__(self, c1, c2, k=5):
c_ = c1 // 2 # hidden channels
self.cv1 = Conv_Block(c1, c_, 1, 1, padding=None)
self.cv2 = Conv_Block(c_ * 4, c2, 1, 1, padding=None)
# TODO: this pads with 0s, whereas torch function pads with -infinity. This results in a < 2% difference in prediction which does not make a difference visually.
self.maxpool = lambda x : x.pad2d((k // 2, k // 2, k // 2, k // 2)).max_pool2d(kernel_size=k, stride=1)
def __call__(self, x):
x = self.cv1(x)
x2 = self.maxpool(x)
x3 = self.maxpool(x2)
x4 = self.maxpool(x3)
return self.cv2(x.cat(x2, x3, x4, dim=1))
class DFL:
def __init__(self, c1=16):
self.conv = Conv2d(c1, 1, 1, bias=False)
x = Tensor.arange(c1)
self.conv.weight.assign(x.reshape(1, c1, 1, 1))
self.c1 = c1
def __call__(self, x):
b, c, a = x.shape # batch, channels, anchors
return self.conv(x.reshape(b, 4, self.c1, a).transpose(2, 1).softmax(1)).reshape(b, 4, a)
#backbone
class Darknet:
def __init__(self, w, r, d):
self.b1 = [Conv_Block(c1=3, c2= int(64*w), kernel_size=3, stride=2, padding=1), Conv_Block(int(64*w), int(128*w), kernel_size=3, stride=2, padding=1)]
self.b2 = [C2f(c1=int(128*w), c2=int(128*w), n=round(3*d), shortcut=True), Conv_Block(int(128*w), int(256*w), 3, 2, 1), C2f(int(256*w), int(256*w), round(6*d), True)]
self.b3 = [Conv_Block(int(256*w), int(512*w), kernel_size=3, stride=2, padding=1), C2f(int(512*w), int(512*w), round(6*d), True)]
self.b4 = [Conv_Block(int(512*w), int(512*w*r), kernel_size=3, stride=2, padding=1), C2f(int(512*w*r), int(512*w*r), round(3*d), True)]
self.b5 = [SPPF(int(512*w*r), int(512*w*r), 5)]
def return_modules(self):
return [*self.b1, *self.b2, *self.b3, *self.b4, *self.b5]
def __call__(self, x):
x1 = x.sequential(self.b1)
x2 = x1.sequential(self.b2)
x3 = x2.sequential(self.b3)
x4 = x3.sequential(self.b4)
x5 = x4.sequential(self.b5)
return (x2, x3, x5)
#yolo fpn (neck)
class Yolov8NECK:
def __init__(self, w, r, d): #width_multiple, ratio_multiple, depth_multiple
self.up = Upsample(2, mode='nearest')
self.n1 = C2f(c1=int(512*w*(1+r)), c2=int(512*w), n=round(3*d), shortcut=False)
self.n2 = C2f(c1=int(768*w), c2=int(256*w), n=round(3*d), shortcut=False)
self.n3 = Conv_Block(c1=int(256*w), c2=int(256*w), kernel_size=3, stride=2, padding=1)
self.n4 = C2f(c1=int(768*w), c2=int(512*w), n=round(3*d), shortcut=False)
self.n5 = Conv_Block(c1=int(512* w), c2=int(512 * w), kernel_size=3, stride=2, padding=1)
self.n6 = C2f(c1=int(512*w*(1+r)), c2=int(512*w*r), n=round(3*d), shortcut=False)
def return_modules(self):
return [self.n1, self.n2, self.n3, self.n4, self.n5, self.n6]
def __call__(self, p3, p4, p5):
x = self.n1(self.up(p5).cat(p4, dim=1))
head_1 = self.n2(self.up(x).cat(p3, dim=1))
head_2 = self.n4(self.n3(head_1).cat(x, dim=1))
head_3 = self.n6(self.n5(head_2).cat(p5, dim=1))
return [head_1, head_2, head_3]
#task specific head.
class DetectionHead:
def __init__(self, nc=80, filters=()):
self.ch = 16
self.nc = nc # number of classes
self.nl = len(filters)
self.no = nc + self.ch * 4 #
self.stride = [8, 16, 32]
c1 = max(filters[0], self.nc)
c2 = max((filters[0] // 4, self.ch * 4))
self.dfl = DFL(self.ch)
self.cv3 = [[Conv_Block(x, c1, 3), Conv_Block(c1, c1, 3), Conv2d(c1, self.nc, 1)] for x in filters]
self.cv2 = [[Conv_Block(x, c2, 3), Conv_Block(c2, c2, 3), Conv2d(c2, 4 * self.ch, 1)] for x in filters]
def __call__(self, x):
for i in range(self.nl):
x[i] = (x[i].sequential(self.cv2[i]).cat(x[i].sequential(self.cv3[i]), dim=1))
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
y = [(i.reshape(x[0].shape[0], self.no, -1)) for i in x]
x_cat = y[0].cat(y[1], y[2], dim=2)
box, cls = x_cat[:, :self.ch * 4], x_cat[:, self.ch * 4:]
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
z = dbox.cat(cls.sigmoid(), dim=1)
return z
class YOLOv8:
def __init__(self, w, r, d, num_classes): #width_multiple, ratio_multiple, depth_multiple
self.net = Darknet(w, r, d)
self.fpn = Yolov8NECK(w, r, d)
self.head = DetectionHead(num_classes, filters=(int(256*w), int(512*w), int(512*w*r)))
def __call__(self, x):
x = self.net(x)
x = self.fpn(*x)
return self.head(x)
def return_all_trainable_modules(self):
backbone_modules = [*range(10)]
yolov8neck_modules = [12, 15, 16, 18, 19, 21]
yolov8_head_weights = [(22, self.head)]
return [*zip(backbone_modules, self.net.return_modules()), *zip(yolov8neck_modules, self.fpn.return_modules()), *yolov8_head_weights]
if __name__ == '__main__':
# usage : python3 yolov8.py "image_URL OR image_path" "v8 variant" (optional, n is default)
if len(sys.argv) < 2 and len(sys[1]) > 1:
print("Error: Image URL or path not provided.")
sys.exit(1)
img_path = sys.argv[1]
yolo_variant = sys.argv[2] if len(sys.argv) >= 3 else (print("No variant given, so choosing 'n' as the default. Yolov8 has different variants, you can choose from ['n', 's', 'm', 'l', 'x']") or 'n')
print(f'running inference for YOLO version {yolo_variant}')
output_folder_path = './outputs_yolov8'
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
#absolute image path or URL
image_location = [np.frombuffer(io.BytesIO(fetch(img_path)).read(), np.uint8)]
image = [cv2.imdecode(image_location[0], 1)]
out_paths = [os.path.join(output_folder_path, img_path.split("/")[-1].split('.')[0] + "_output" + '.' + img_path.split("/")[-1].split('.')[1])]
if not isinstance(image[0], np.ndarray):
print('Error in image loading. Check your image file.')
sys.exit(1)
pre_processed_image = preprocess(image)
# Different YOLOv8 variants use different w , r, and d multiples. For a list , refer to this yaml file (the scales section) https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/v8/yolov8.yaml
depth, width, ratio = get_variant_multiples(yolo_variant)
yolo_infer = YOLOv8(w=width, r=ratio, d=depth, num_classes=80)
weights_location = Path(__file__).parent.parent / "weights" / f'yolov8{yolo_variant}.safetensors'
download_file(f'https://gitlab.com/r3sist/yolov8_weights/-/raw/master/yolov8{yolo_variant}.safetensors', weights_location)
state_dict = safe_load(weights_location)
load_state_dict(yolo_infer, state_dict)
st = time.time()
predictions = yolo_infer(pre_processed_image)
print(f'did inference in {int(round(((time.time() - st) * 1000)))}ms')
post_predictions = postprocess(preds=predictions, img=pre_processed_image, orig_imgs=image)
#v8 and v3 have same 80 class names for Object Detection
class_labels = fetch('https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names')
class_labels = class_labels.decode('utf-8').split('\n')
draw_bounding_boxes_and_save(orig_img_paths=image_location, output_img_paths=out_paths, all_predictions=post_predictions, class_labels=class_labels)
# TODO for later:
# 1. Fix SPPF minor difference due to maxpool
# 2. AST exp overflow warning while on cpu
# 3. Make NMS faster
# 4. Add video inference and webcam support

77
test/external/external_test_yolov8.py vendored Normal file
View File

@ -0,0 +1,77 @@
import numpy as np
from extra.utils import fetch, download_file, get_child
from examples.yolov8 import YOLOv8, get_variant_multiples, preprocess, postprocess, label_predictions
from pathlib import Path
import unittest
import io, cv2, os
import onnxruntime as ort
import ultralytics
from tinygrad.state import safe_load, load_state_dict
class TestYOLOv8(unittest.TestCase):
def test_all_load_weights(self):
for variant in ['n', 's', 'm', 'l', 'x']:
weights_location = Path(__file__).parent.parent.parent / "weights" / f'yolov8{variant}.safetensors'
download_file(f'https://gitlab.com/r3sist/yolov8_weights/-/raw/master/yolov8{variant}.safetensors', weights_location)
depth, width, ratio = get_variant_multiples(variant)
TinyYolov8 = YOLOv8(w=width, r=ratio, d=depth, num_classes=80)
state_dict = safe_load(weights_location)
load_state_dict(TinyYolov8, state_dict)
print(f'successfully loaded weights for yolov{variant}')
def test_predictions(self):
test_image_urls = ['https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg', 'https://www.aljazeera.com/wp-content/uploads/2022/10/2022-04-28T192650Z_1186456067_UP1EI4S1I0P14_RTRMADP_3_SOCCER-ENGLAND-MUN-CHE-REPORT.jpg']
variant = 'n'
weights_location = Path(__file__).parent.parent.parent / "weights" / f'yolov8{variant}.safetensors'
depth, width, ratio = get_variant_multiples(variant)
TinyYolov8 = YOLOv8(w=width, r=ratio, d=depth, num_classes=80)
state_dict = safe_load(weights_location)
load_state_dict(TinyYolov8, state_dict)
for i in range(len(test_image_urls)):
img_stream = io.BytesIO(fetch(test_image_urls[i]))
img = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), 1)
test_image = preprocess([img])
predictions = TinyYolov8(test_image)
post_predictions = postprocess(preds=predictions, img=test_image, orig_imgs=[img])
labels = label_predictions(post_predictions)
assert labels == {5: 1, 0: 4, 11: 1} if i == 0 else labels == {0: 13, 29: 1, 32: 1}
def test_forward_pass_torch_onnx(self):
variant = 'n'
weights_location_onnx = Path(__file__).parent.parent.parent / "weights" / f'yolov8{variant}.onnx'
weights_location_pt = Path(__file__).parent.parent.parent / "weights" / f'yolov8{variant}.pt'
weights_location = Path(__file__).parent.parent.parent / "weights" / f'yolov8{variant}.safetensors'
download_file(f'https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8{variant}.pt', weights_location_pt)
# the ultralytics export prints a lot of unneccesary things
if not os.path.isfile(weights_location_onnx):
model = ultralytics.YOLO(model=weights_location_pt, task='Detect')
model.export(format="onnx",imgsz=[640, 480])
depth, width, ratio = get_variant_multiples(variant)
TinyYolov8 = YOLOv8(w=width, r=ratio, d=depth, num_classes=80)
state_dict = safe_load(weights_location)
load_state_dict(TinyYolov8, state_dict)
image_location = [np.frombuffer(io.BytesIO(fetch('https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg')).read(), np.uint8)]
orig_image = [cv2.imdecode(image_location[0], 1)]
input_image = preprocess(orig_image)
onnx_session = ort.InferenceSession(weights_location_onnx)
onnx_input_name = onnx_session.get_inputs()[0].name
onnx_output_name = onnx_session.get_outputs()[0].name
onnx_output = onnx_session.run([onnx_output_name], {onnx_input_name: input_image.cpu().numpy()})
tiny_output = TinyYolov8(input_image)
# currently rtol is 0.025 because there is a 1-2% difference in our predictions
# because of the zero padding in SPPF module (line 280) maxpooling layers rather than the -infinity in torch.
# This difference does not make a difference "visually".
np.testing.assert_allclose(onnx_output[0], tiny_output.cpu().numpy(), atol=5e-4, rtol=0.025)
if __name__ == '__main__':
unittest.main()