mirror of https://github.com/commaai/tinygrad.git
new models in tests
This commit is contained in:
parent
a2b77cc399
commit
678fe9ad7c
|
@ -136,7 +136,7 @@ jobs:
|
|||
run: |
|
||||
FLOAT16=1 UNSAFE_FLOAT4=1 DEBUGCL=1 python3 openpilot/compile.py
|
||||
UNSAFE_FLOAT4=1 DEBUGCL=1 python3 openpilot/compile.py
|
||||
PYTHONPATH="." python3 openpilot/run_thneed.py /tmp/output.thneed https://github.com/commaai/openpilot/raw/ea449f1fe0bbff0eff5b12d64f0b5e75b7983998/selfdrive/modeld/models/supercombo.onnx
|
||||
PYTHONPATH="." python3 openpilot/run_thneed.py /tmp/output.thneed https://github.com/commaai/openpilot/raw/6c5693e965b9c63f8678f52b9e9b5abe35f23feb/selfdrive/modeld/models/supercombo.onnx
|
||||
|
||||
testmypy:
|
||||
name: Mypy Tests
|
||||
|
|
|
@ -25,7 +25,7 @@ from extra.onnx import get_run_onnx
|
|||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.helpers import prod
|
||||
|
||||
OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/ea449f1fe0bbff0eff5b12d64f0b5e75b7983998/selfdrive/modeld/models/supercombo.onnx"
|
||||
OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/6c5693e965b9c63f8678f52b9e9b5abe35f23feb/selfdrive/modeld/models/supercombo.onnx"
|
||||
|
||||
np.random.seed(1337)
|
||||
def get_random_input_tensors():
|
||||
|
|
|
@ -75,7 +75,7 @@ def load_thneed_model(fn="model.thneed", float32=False, replace=None):
|
|||
else:
|
||||
# zero out buffers
|
||||
buf = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=b'\x00'*o['size']*(2 if float32 else 1))
|
||||
|
||||
|
||||
bufs[o['id']] = buf
|
||||
bufs_loaded[o['id']] = 'data' in o
|
||||
|
||||
|
@ -185,7 +185,7 @@ def load_thneed_model(fn="model.thneed", float32=False, replace=None):
|
|||
#if k['name'] == 'zero_pad_image_float':
|
||||
#arr = np.zeros((aaa[1].size//4), dtype=np.float32)
|
||||
#cl.enqueue_copy(q, arr, aaa[1])
|
||||
|
||||
|
||||
"""
|
||||
if k['name'] == "convolution_horizontal_reduced_reads":
|
||||
print(aaa)
|
||||
|
@ -229,9 +229,9 @@ if __name__ == "__main__":
|
|||
np_inputs = {
|
||||
"input_imgs": np.random.randn(*(1, 12, 128, 256))*256,
|
||||
"big_input_imgs": np.random.randn(*(1, 12, 128, 256))*256,
|
||||
"desire": np.zeros((1, 8)),
|
||||
"desire": np.zeros((1, 100, 8)),
|
||||
"traffic_convention": np.array([[1., 0.]]),
|
||||
"initial_state": np.random.randn(*(1, 512))
|
||||
"features_buffer": np.random.randn(*(1, 99, 128))
|
||||
}
|
||||
np_inputs = {k:v.astype(np.float32) for k,v in np_inputs.items()}
|
||||
inputs = list(np_inputs.values())[::-1]
|
||||
|
@ -251,7 +251,7 @@ if __name__ == "__main__":
|
|||
diff = 0
|
||||
diffs = []
|
||||
for i in range(ret.shape[0]):
|
||||
if abs(out[i]-ret[i]) > 0.1 and abs((out[i]-ret[i])/out[i]) > 0.01:
|
||||
if abs(out[i]-ret[i]) > 0.15 and abs((out[i]-ret[i])/out[i]) > 0.01:
|
||||
diff += 1
|
||||
diffs.append(out[i] - ret[i])
|
||||
if diff == 10:
|
||||
|
|
Loading…
Reference in New Issue