mirror of https://github.com/commaai/tinygrad.git
This reverts commit 91eb93f85a
.
This commit is contained in:
parent
91eb93f85a
commit
6356474d6d
|
@ -135,8 +135,8 @@ assert len(lazyop.srcs) == 2
|
|||
# the source is a LazyBuffer that is a "CPU" Tensor
|
||||
# again, a LazyOp AST is like a GPU kernel. you have to copy the data on the device first
|
||||
assert lazyop.srcs[0].op == LoadOps.COPY
|
||||
assert lazyop.srcs[0].srcs[0].device == "EXT"
|
||||
assert lazyop.srcs[0].srcs[0].realized._buf[0][0] == 2, "the src of the COPY LazyOP is a LazyBuffer on the CPU holding [2]"
|
||||
assert lazyop.srcs[0].srcs[0].device == "CPU"
|
||||
assert lazyop.srcs[0].srcs[0].realized._buf[0] == 2, "the src of the COPY LazyOP is a LazyBuffer on the CPU holding [2]"
|
||||
assert result.lazydata.base.realized is None, "the LazyBuffer is not realized yet"
|
||||
|
||||
# now we realize the LazyBuffer
|
||||
|
|
|
@ -7,7 +7,7 @@ def multidevice_test(fxn):
|
|||
exclude_devices = getenv("EXCLUDE_DEVICES", "").split(",")
|
||||
def ret(self):
|
||||
for device in Device._devices:
|
||||
if device in ["DISK", "EXT", "FAKE"]: continue
|
||||
if device in ["DISK", "FAKE"]: continue
|
||||
if not CI: print(device)
|
||||
if device in exclude_devices:
|
||||
if not CI: print(f"WARNING: {device} test is excluded")
|
||||
|
|
|
@ -350,7 +350,7 @@ class TestSchedule(unittest.TestCase):
|
|||
|
||||
def test_double_from(self):
|
||||
x = Tensor([1,2,3,4])
|
||||
out = x.to('ext')
|
||||
out = x.to('cpu')
|
||||
check_schedule(out, 0, filter_loadops=False)
|
||||
|
||||
def test_pow_const_tensor_simplified(self):
|
||||
|
|
|
@ -68,7 +68,7 @@ class LinearizerOptions(NamedTuple):
|
|||
|
||||
class Kernel:
|
||||
def __init__(self, ast:LazyOp, opts:Optional[LinearizerOptions]=None):
|
||||
self.opts = opts or (device.compiler.linearizer_opts if isinstance(device:=Device[Device.DEFAULT], Compiled) and device.compiler is not None else
|
||||
self.opts = opts or (device.compiler.linearizer_opts if isinstance(device:=Device[Device.DEFAULT], Compiled) else
|
||||
LinearizerOptions(Device.DEFAULT))
|
||||
self.ast = ast
|
||||
assert ast.op == BufferOps.STORE, f"kernels must have a store as the output, got {ast.op}"
|
||||
|
|
|
@ -281,7 +281,6 @@ class CompiledASTRunner(JITRunner):
|
|||
if local_size is not None: local_size = local_size + [1]*(3-len(local_size))
|
||||
self.name, self.display_name, self.prg, self.device, self.global_size, self.local_size, self.first_run = \
|
||||
to_function_name(name), name, prg, device, global_size, local_size, True
|
||||
assert self.device.compiler is not None, "compiler is reuired to make an AST kernel"
|
||||
lib:bytes = precompiled if precompiled is not None else self.device.compiler.compile_cached(prg)
|
||||
self.lib, self.clprg = lib, self.device.runtime(self.name, lib)
|
||||
self.vars: List[Variable] = []
|
||||
|
@ -313,17 +312,15 @@ class CompiledASTRunner(JITRunner):
|
|||
return et
|
||||
|
||||
class Compiled:
|
||||
def __init__(self, device:str, allocator:Allocator, compiler:Optional[Compiler], runtime, graph=None):
|
||||
def __init__(self, device:str, allocator:Allocator, compiler:Compiler, runtime, graph=None):
|
||||
self.dname, self.allocator, self.compiler, self.runtime, self.graph = device, allocator, compiler, runtime, graph
|
||||
def synchronize(self): pass # override this in your device
|
||||
|
||||
def to_program(self, k:Linearizer) -> CompiledASTRunner:
|
||||
assert self.compiler is not None, "compiler is required to run AST"
|
||||
k.linearize()
|
||||
return CompiledASTRunner(k.ast, k.name, self.compiler.render(to_function_name(k.name), k.uops), self, k.global_size, k.local_size)
|
||||
|
||||
def get_linearizer(self, ast:LazyOp) -> Linearizer:
|
||||
assert self.compiler is not None, "compiler is required to build AST"
|
||||
if DEBUG >= 3:
|
||||
from tinygrad.features.graph import print_tree
|
||||
print_tree(ast)
|
||||
|
|
|
@ -153,7 +153,7 @@ def time_linearizer(lin:Linearizer, rawbufs:List[Buffer], allow_test_size=True,
|
|||
if not disable_cache and CACHELEVEL >= 2 and (val:=diskcache_get("time_linearizer", key)) is not None: return min(val)
|
||||
|
||||
dev = Device[lin.opts.device]
|
||||
assert isinstance(dev, Compiled) and dev.compiler is not None
|
||||
assert isinstance(dev, Compiled)
|
||||
|
||||
var_vals = {k:(k.max+k.min)//2 for k in lin.ast.vars()}
|
||||
lib, global_size, local_size = _compile_linearizer(dev.compiler, lin)
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
from typing import Tuple, Any
|
||||
from tinygrad.device import Compiled, Allocator
|
||||
|
||||
# the Any is an arbitrary object that's kept in scope with the memoryview
|
||||
class ExtAllocator(Allocator):
|
||||
# NOTE: this doesn't work with allow_zero_copy, it's read only somehow
|
||||
#def as_buffer(self, src:Tuple[memoryview, Any]) -> memoryview: return src[0]
|
||||
def copyin(self, dest:Tuple[memoryview, Any], src:memoryview): dest[0][:] = src
|
||||
def copyout(self, dest:memoryview, src:Tuple[memoryview, Any]): dest[:] = src[0]
|
||||
|
||||
class ExtDevice(Compiled):
|
||||
def __init__(self, device:str): super().__init__(device, ExtAllocator(), None, None)
|
|
@ -93,7 +93,7 @@ class PythonProgram:
|
|||
ul[i] = [pbufs.pop(0).cast(dtype.fmt)] * warp_size
|
||||
elif uop is UOps.DEFINE_LOCAL:
|
||||
assert dtype.fmt is not None
|
||||
lbuf = memoryview(bytearray(arg[1]*dtype.itemsize))
|
||||
lbuf = memoryview(bytearray(arg[1]*dtype.sz))
|
||||
ul[i] = [lbuf.cast(dtype.fmt)] * warp_size
|
||||
elif uop is UOps.SPECIAL:
|
||||
if arg[1][0] == 'g':
|
||||
|
|
|
@ -7,7 +7,7 @@ from functools import partialmethod, reduce
|
|||
import numpy as np
|
||||
|
||||
from tinygrad.dtype import DType, dtypes, ImageDType, Scalar, least_upper_float, least_upper_dtype
|
||||
from tinygrad.helpers import argfix, make_pair, getenv, IMAGE, DEBUG, WINO, flatten, prod, all_int, round_up, merge_dicts, fully_flatten, flat_mv
|
||||
from tinygrad.helpers import argfix, make_pair, getenv, IMAGE, DEBUG, WINO, flatten, prod, all_int, round_up, merge_dicts, fully_flatten
|
||||
from tinygrad.lazy import LazyBuffer
|
||||
from tinygrad.features.multi import MultiLazyBuffer
|
||||
from tinygrad.ops import LoadOps
|
||||
|
@ -42,11 +42,8 @@ def _loadop(op, shape:Tuple[sint,...], dtype:DType, device:Union[str, Tuple[str,
|
|||
return MultiLazyBuffer([LazyBuffer.loadop(op, shape, dtype, d, arg, src) for d in device], None)
|
||||
|
||||
def _fromcpu(x: np.ndarray) -> LazyBuffer:
|
||||
ret = LazyBuffer.loadop(LoadOps.EMPTY, x.shape, dtypes.from_np(x.dtype), "EXT")
|
||||
if x.size == 0:
|
||||
ret.realized = Buffer("EXT", 0, dtypes.from_np(x.dtype), (memoryview(bytearray()), None))
|
||||
else:
|
||||
ret.realized = Buffer("EXT", prod(x.shape), dtypes.from_np(x.dtype), (flat_mv(np.require(x, requirements='C').data), x))
|
||||
ret = LazyBuffer.loadop(LoadOps.EMPTY, x.shape, dtypes.from_np(x.dtype), "CPU")
|
||||
ret.realized = Buffer("CPU", prod(x.shape), dtypes.from_np(x.dtype), x.flatten())
|
||||
return ret
|
||||
|
||||
def _get_winograd_matcols(mat, dims:int, shp:Tuple[sint, ...], device:Union[str, Tuple[str, ...]]) -> List[List[Tensor]]:
|
||||
|
|
Loading…
Reference in New Issue